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A4. Willingness to pay is increasing in past sales. Multiplicities of equilibria in
related contexts, in particular due to network e¤ects, have been discussed in the literature.
If pt were increasing in current sales (if we had pt = p(xt) instead of pt = p(xt¡1)), the market
could possibly coordinate in a number of di¤erent states. We could have equilibria with high
demand and high entry, as well as low demand and low entry. While in some markets the
level of current sales may also be important, xt¡1 is used here as a proxy for the level of the
consumers’ overall exposure to the sales volume of the product.

A9. “Microfoundations” for the demand. An information-based description of
consumer behavior is consistent with the assumed pattern. Suppose, for example, that
consumers’ willingness to pay is an increasing function of the expectation of µ; due to network
e¤ects. Further, consumers have access to the same information as …rms and learn in a
Bayesian fashion. Then their willingness to pay is an increasing function of past capacities,
since expected µ is increasing in xt¡1 as long as there is no overshooting. I thank a referee
for pointing this out.

A10. Discussion: demand uncertainty and endogenous demand. Given that
there are two key components in the model, demand uncertainty for the …rms and dependence
of demand on past sales, it is important to discuss the role of each in the analysis. First,
suppose that there is only demand uncertainty but demand is …xed. This situation, which
corresponds to Rob [1991], is admitted in the analysis as a special case (m = 0). In this
case, the dynamics are driven exclusively by demand learning. The determining factor is
the distribution function F: As long as its hazard rate is not decreasing, entry is decreasing
over time (re‡ecting the fact that with more invested capacity there is a greater danger
of overshooting). For example, with F uniform; both the competitive and the optimal
cumulative path will be concave (with optimal entry always exceeding the competitive by
a level re‡ecting the one externality that remains in this framework, learning the demand).
When we also consider the second key component of the model, that demand may grow
endogenously, we can characterize a second externality associated with cultivating the market
and show that the expansion paths will be qualitatively di¤erent.

Second, assume that demand is an increasing function of past sales but …rms face no
demand uncertainty. In our analysis, demand uncertainty implies that capacity expansion
is gradual: As new information about µ is revealed in every period; additional entry is



attracted. If …rms faced no demand uncertainty, entry would be instantaneous and cover the
entire market (this can be seen formally if F becomes a trivial distribution with all its mass
on a given value) - clearly in this case there is no room for learning. Clearly, a study of the
dynamic interrelation between entry and demand would not be possible in an instantaneous
adjustment scenario. Note that if demand learning was not present in the model, adjustment
costs or …rm heterogeneity could also lead to gradual expansion.

A12. Proof of Proposition 1. (3) follows from Rt(xt¡1; yt) = c. The probability
of overshooting is F (xt¡1 + yt j xt¡1 < µ) and gives zero pro…t. With the complementary
probability, the …rm has current period pro…t equal to p(xt¡1) and a continuation payo¤
which is equal to c, because pro…ts are competed away and Rt(xt¡1; yt) = c applies in the
following period as well. Existence and uniqueness can then be established using elementary
methods. It can be shown that the RHS of (3) is strictly decreasing and continuous in yt
and becomes higher than c for yt = 0 (using p1 > c(1¡ ¯)) and lower than c for yt too high.
For details see Vettas [1998] where, in turn, the proof follows the methodology developed in
Rob [1991] for the constant demand case.

A16. Proof of Proposition 2: The solution to the dynamic programming prob-
lem. For simplicity, we suppress the time subscripts in these calculations and write x for
xt¡1 and y for yt. Di¤erentiating the RHS of (5) with respect to y and rearranging, we obtain
the following …rst-order condition:

c = [p(x) + ¯V 0(x+ y)]
1¡ F (x+ y)
1¡ F (x) ¡ ¯

"
V (x+ y)¡ p(x+ y)(x+ y)

1¡ ¯

#
f(x+ y)

1¡ F (x) :

Next, using the “envelope” theorem we obtain:

V 0(x) = [p0(x)(x+ y) + p(x) + ¯V 0(x+ y)]
1¡ F (x+ y)
1¡ F (x) +

[p(x)(x+ y) + ¯V (x+ y)]
[1¡ F (x+ y)]f(x)¡ [1¡ F (x)]f(x+ y)

[1¡ F (x)]2 +

Z x+y

x
[p0(x)

µf(µ)

1¡ F (x) + [p(x) +
¯

1¡ ¯p(µ)]
µf(µ)f(x)

[1¡ F (x)]2 ]dµ+

[p(x) +
¯

1¡ ¯ p(x+ y)]
(x+ y)f(x+ y)

1¡ F (x) ¡
"
p(x)x

1¡ ¯
f(x)

1¡ F (x)

#
:
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Using the …rst order condition to substitute for the term ¯[V (x+ y)¡ p(x+y)(x+y)
1¡¯ ] f(x+y)

1¡F (x) in
the envelope equation and manipulating the resulting equation we have:

V 0(x) = c+ p0(x)(x+ y)
1¡ F (x+ y)
1¡ F (x) +

Z x+y

x
p0(x)

µf(µ)

1¡ F (x)dµ+

f(x)

1¡ F (x)

(
[p(x)(x+ y) + ¯V (x+ y)]

1¡ F (x+ y)
1¡ F (x) ¡ p(x)x

1¡ ¯ +
Z x+y

x
[p(x) +

¯

1¡ ¯ p(µ)]
µf(µ)

[1¡ F (x)]dµ
)
:

The next step is to use the value equation that follows from (5) to substitute for the term
[p(x)(x+ y) + ¯V (x+ y)]1¡F (x+y)

1¡F (x) : We obtain:

V 0(x) = c+p0(x)(x+y)
1¡ F (x+ y)
1¡ F (x) +

Z x+y

x
p0(x)

µf(µ)

1¡ F (x)dµ+
f(x)

1¡ F (x) [V (x)+cy¡
p(x)x

1¡ ¯ ]:

Taking this expression one period forward, substituting in the …rst order condition for the
second term of its RHS, and rearranging terms we …nally obtain the Euler equation (6).

A17. Optimal expansion under linear demand growth. Under (2), (6) becomes:

c = (p1 +mxt¡1 + ¯c)
1¡ F (xt¡1 + yt)
1¡ F (xt¡1)

+ ¯cyt+1
f(xt¡1 + yt)

1¡ F (xt¡1)
+

+¯m

"
(xt¡1 + yt + yt+1)

1¡ F (xt¡1 + yt + yt+1)
1¡ F (xt¡1)

+
Z xt¡1+yt+yt+1

xt¡1+yt

µf(µ)

1¡ F (xt¡1)
dµ

#
: (A17.1)

Comparing optimal expansion paths withm0 > m. (See Figure A2 in this Appendix
for an illustration.) Formally, we have the following result: Let m0 > m. The optimal
capacity path, xot , for m0 is always “above” the path for m. That is, using the notation
xot (m) to indicate the dependence of capacity on m;xot (m

0) > xot (m) for t = 1; 2; 3; :::
The key for the proof is that a larger m increases expected pro…tability in the market

without increasing the cost of overshooting. If overshooting occurs, the …rm does not lose its
‡ow pro…t. Its only cost is that is has invested in capacity that will not be used. Therefore,
the cost of overshooting depends only on the cost of capital, c, and not on the demand para-
meter m. On the other hand, a higher m increases the incentive to expand for two reasons.
First, the current price pt (and, thus, the expected pro…t per unit of capacity invested) is
higher. Second, a higher m yields a higher expected “return” in terms of increasing future
demand for each unit of capacity that is currently invested.
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A19. The equation for the optimal investment path (under linear demand
growth). When F is uniform on [µ; ¹µ]; from equation (A17.1) in this Appendix we obtain
for t = 2; 3; :::

(¹µ¡xt¡1)c = (p1+mxt¡1+¯c)(¹µ¡xt)+¯(xt¡1¡xt)
·
m

2
(xt¡1 + xt) + c

¸
+¯mxt+1(¹µ¡xt¡1)

(A19.1)
which is a non-linear second order di¤erence equation in xt. Rearranging terms, (A19.1) can
be written as

a1x
2
t+1 + a2xt+1 + a3 = 0,

where a1 = ¯m=2; a2 = ¡¯(m¹µ+c); a3 = c(¹µ¡xt¡1)¡(p1+mxt¡1+¯c)(¹µ¡xt)+¯cxt+¯m2 x2t :
It is easy to check that the larger of the two roots of the above equation is always above ¹µ.
Such values clearly cannot belong to the optimal path. Therefore, only the smaller root is
admissible and it gives (7) which has to be satis…ed by the optimal investment path.

A21. Equation (7) and the optimal solution. (7) is a second-order equation and we
have only one initial condition, x0: There are some additional properties that the optimal
path should satisfy. First, obviously xt 2 [0; ¹µ] for all t. Second, xt is increasing. Third, the
optimal capacity path is always above the corresponding competitive path, that is, it cannot
be smaller than the RHS of the capacity equation in (4) - this important property is formally
proved in Proposition 3. In addition, as shown above, competitive entry does not stop until
overshooting occurs. Since the optimal path has to be above the competitive path, this also
implies (for uniform F ) that capacity tends over time to the upper bound of the domain. In
what follows, this can be used as a second boundary condition. Summarizing, the optimal
path will be analyzed using the information that it satis…es (7), monotonicity, xt 2 [0; ¹µ],
and the two conditions x0 = 0 and xt ! ¹µ as t ! 1.

A23. The optimal solution and the dynamical system. Substituting xt¡1 = x1 =
xt+1, we see that (7) has two …xed points, ¹µ and (c ¡ p1 ¡ ¯c)=m(1 + ¯). It is easy to see
that the second …xed point is less than zero (using p1 > c(1 ¡ ¯)), and is not admissible
since capacities satisfy xt ¸ 0. The next step is to study the dynamics of the system. First
the local properties around ¹µ need to be analyzed since we know that the optimal solution
satis…es xt ! ¹µ as t ! 1. Then the global properties of (7) should be examined to obtain
some further information about the optimal path.

It is helpful to rewrite (7) as a system of …rst-order equations. De…ning zt ´ xt; w ´ xt¡1;

and '(xt¡1; xt) as the RHS of (7), we obtain:
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(
wt+1 = zt

zt+1 = '(wt; zt)
: (A23.1)

First we examine the local stability of ¹µ. The Jacobian, evaluated at zt = wt = ¹µ, is
"

0 1

¡1=¯ (p1 + (1 + ¯)m¹µ + 2¯c)=¯c

#
:

By considering the characteristic equation and the fact that the determinant of the Jacobian
is greater than 1 and its trace positive, we can show that the Jacobian has two eigenvalues,
¸1; ¸2; both real, with ¸1 2 (0; 1) and ¸2 > 1. It follows that, with respect to its local
stability properties, ¹µ is a saddle. Further, the stable eigenvalue ¸1 can be calculated as

¸1 =
1

2¯c

·
p1 + (1 + ¯)m¹µ + 2¯c¡

q
(p1 + (1 + ¯)m¹µ + 2¯c)2 ¡ 4¯c2

¸
(A23.2)

and the corresponding eigenvector is:

¸1 ¢ (1=¸1; 1).

Since ¹µ is a saddle, in the linearized system there is a unique path, the “saddle path”,
converging to ¹µ. Its equation is

(wt ¡ ¹µ) =
1

¸1
(zt ¡ ¹µ)

which, since we have de…ned zt = xt and wt = xt¡1, can be rewritten as xt = ¸1xt¡1 + ¹µ(1¡
¸1). The saddle path is the stable (invariant) subspace for the linearized system (see e.g.
Guckenheimer and Holmes [1983], p.17). Since ¸1 2 (0; 1), for x0 = 0 we obtain:

xt = ¹µ[1¡ (¸1)t]. (A23.3)

Note that since ¹µ is hyperbolic (eigenvalues di¤erent from 1 in absolute value), the lineariza-
tion is a good local approximation. Since ¹µ is a saddle we know that any solution close to
¹µ diverges unless it approaches from a single direction, that of the stable eigenvector. Thus,
since the optimal path converges to ¹µ it has to follow locally this direction. (Note that,
as discussed below, for m = 0 the system becomes linear and (A23.3) itself is the optimal
path.) These considerations also explain why in the numerical examples the system is very
sensitive: points that approach ¹µ from the wrong direction diverge.
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The analysis so far has been only local. We now turn to the global properties of (A23.1).
By using a phase diagram, that is, a diagram showing the direction of increase for the vari-
ables, we are able to identify a speci…c region where the optimal path necessarily belongs.
We examine …rst the phaselines, that is, the points where one of the two variables is station-
ary. From (A23.1) it follows that the wt = wt+1 locus is the wt = zt equation, that is, the
45± line of the (wt; zt) plane. The zt = zt+1 locus, on the other hand, is zt = '(wt; zt) which
can be solved explicitly for wt:

wt =
¹µ(p¡ c+ ¯c)¡ (p+ ¯c¡ ¯m¹µ)zt ¡ ¯mz2t

mzt ¡mµ ¡ c (A23.4)

Finally, we can complete the phase diagram by identifying whether wt and zt are increasing
or decreasing above and below the phaselines. Clearly for points above (below) the wt = zt
line we have wt+1 < wt (wt+1 > wt). It is also easy to establish that for points above (below)
the zt+1 = zt line we have zt+1 < zt (zt+1 > zt). We conclude that the phase diagram is as
in Figure A4 in the Appendix, where we use arrows to indicate the direction of increase for
each variable under (A23.1).

We can now use the above properties to characterize the optimal solution. First, since
the optimal solution is increasing and satis…es xt 2 [0; ¹µ] for all t, it follows from the vector
…eld that the optimal path is restricted in the area (A) de…ned by zt = ¹µ; yt = 0 and the
zt = zt+1 line. Points outside A clearly cannot belong to the optimal path. De…ning A more
precisely, we can show that the zt+1 = zt locus intersects the wt = 0 axis only at one positive
value, ¹z, which can be calculated as

¹z =
1

2¯m

·q
(p+ ¯c+ ¯m¹µ)2 ¡ 4¯m¹µc¡ (p+ ¯c+ ¯m¹µ)

¸
: (A23.5)

We can further show that for zt 2 [¹z; ¹µ] the zt+1 = zt locus is positive, increasing and convex.
(Note that zt = zt+1 diverges to +1 as zt ! [(m¹µ+c)=m]¡ > ¹µ and that it intersects wt = 0
at a second, negative point. Also the saddle path for the linearized system is, in area A,
“between” the zt = zt+1 and the zt = ¹µ equations.)

So far we have concluded that the optimal path cannot be outside of area A and should
approach ¹µ from a speci…c direction, otherwise it diverges. Proceeding further, we can
characterize the optimal solution as follows. Intuitively, it seems obvious that there is a
unique path in A converging to ¹µ. Points o¤ this path diverge, as indicated by the arrows
in the vector …eld. More precisely, the optimal solution consists of points that lie on what is
referred to as the stable manifold of ¹µ (see e.g. Guckenheimer and Holmes [1983], p.18). The
“stable manifold theorem” guarantees the existence and uniqueness of an one-dimensional
stable manifold for the system under consideration. A key property is that points on the
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(xt¡1; xt) space converge to ¹µ if and only if they belong to the stable manifold of ¹µ. This
completes the analysis.

Note that while, as usual in this class of problems, this manifold cannot be generally
expressed in closed form, we know that it satis…es the following properties: It is between
the zt = zt+1 and zt = ¹µ equations in area A and can be expressed as a smooth line
wt = h(zt): It is tangent to the stable subspace (saddle path) of the linearized system at
the …xed point: h(¹µ) = ¹µ and h0(¹µ) = 1=¸1. It is also invariant (all points on the manifold
tend to the …xed point under forward iteration of the dynamical system) which implies that
zt = h('(h(zt); zt)).

A24. Discussion of two cases.
Digital television. A case of endogenously changing demand arises when network e¤ects

are present. A recent interesting example is provided by the transition to a digital television
(DTV) standard. This transition involves costly decisions by TV manufacturers, broadcast-
ers, and consumers - and it is important to note that some of these payers are “small,”
while others are “large” (e.g. RCA which owned NBC was a big player in the TV market).
Whereas there are many aspects in this problem, such as a choice between competing stan-
dards (see the related analysis of Farrell and Shapiro [1992]), two key factors are demand
uncertainty and externalities. These considerations underlie a central problem that the Fed-
eral Communications Commission had to face in its e¤ort to make the new DTV market
work smoothly: “One di¢culty is the “chicken-and-egg” relationship between transmission
and reception. Broadcasters are not eager to invest signi…cant sums to broadcast a signal
that no one can receive. Manufacturers are reluctant to build - and consumers will be re-
luctant to buy - receivers for which there is no programming.” [from a Separate Statement
of FCC commissioner Susan Ness, April 3, 1997, regarding MM Docket No. 87-268.] The
FCC’s 1997 decision to require adoption by TV stations faster than the stations might have
chosen seems appropriate. In particular, the FCC adopted rules to guarantee that there
will be three or four network-a¢liated digital signals in the top ten markets in the U.S. by
November 1, 1999 as well as speci…ed other targets to monitor the development of the market
(See FCC’s 6th Report and Order on MM Docket No. 87-268 - FCC 97-115, adopted 4/3/97,
released 4/21/97; “Advanced Television Systems and their Impact Upon the Existing Televi-
sion Broadcast Service”). As explained by the then FCC chairman Reed E. Hundt, this plan
“scuttles the laissez-faire approach of the 1992 decision. Now we rely on the lead dogs to
move the transition, which gives the country the biggest bang with the smallest buck.” (See
Separate Statement, April 3, 1997). Hundt further explained that a focus in multiple TV
signals in each market is critical since “consumers won’t buy TV sets for a single improved
signal” and expressed the feeling that an even stricter rule (for 18 months adoption) may be
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preferable since, among other things, “it would have given manufacturers the certainty they
need to build TV sets in massive amounts...”.

While the model in this paper certainly does not capture all aspects of the transition
to DTV, its implications o¤er some insights regarding such policy issues. In particular, the
model characterizes the dual externalities, regarding learning and “cultivating” the demand,
that lead to ine¢ciently low entry. When incentives are created for early entry, not only is
uncertainty resolved more quickly but there is a dynamic feedback with demand increases
attracting further entry. Naturally, there are now a number of growth forecasts for DTV
(see e.g. Bayus [1993] for a discussion of such estimates). The central idea in this paper
implies that demand forecasts cannot be independent of factors that a¤ect …rms’ entry into
the market, such as the FCC order discussed above (and, in fact, a recognition of demand
endogeneity appears central in such decisions). Note that the DTV transition issue is also
encountered in other countries. Depending on how strongly early entry will be encouraged
in di¤erent markets, we may observe cumulative di¤usion paths that tend to be either more
S-shaped, when a rather “free market” approach is taken, or more “concave” when such
incentives are stronger.

Soccer in the U.S. Recent examples of opening new sports markets, such as professional
women’s basketball leagues, soccer in Japan, or American football in Europe, highlight a
demand endogeneity problem. In particular, the case of soccer in the U.S. is interesting,
with consumers’ interest being dependent on the involvement of television networks and
sponsors, and vice versa. Further, as a recent article notes, “many companies don’t want to
get involved in soccer until they see the payo¤, but they won’t see the payo¤ unless more
companies get involved.” (Wall Street Journal, June 12, 1998, “Why soccer will (won’t)
catch on.”) While there are no “policy” issues here in the sense of government intervention,
it was recognized that a “laissez-faire” approach was not appropriate since the experiences
needed for demand to increase could not be generated by individual …rms. A coordinated
e¤ort, on the other hand, could result to a large demand increase. A number of steps were
taken to help the growth of the market, starting with the decision to host the 1994 World
Cup, a multi-million dollar event, in the U.S. An important part of this decision was the need
for the market to be “cultivated” and the idea that “potential” demand was important rather
than its current level. The start of a new professional league (MLS) followed, building on
the interest generated by the Cup. In its …rst year, the league showed a $19 million loss but
this loss was $3 million smaller than projected, demonstrating again that the organizers had
recognized that demand could grow and pro…ts increase only after consumers have enough
experiences (Wall Street Journal, July 15, 1997, “New leagues go for central ownership.”).
At the same time sponsors became increasingly more interested: While before it had almost
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no soccer business, “after the 1994 World Cup played to sellout crowds in the U.S., Nike
launched its soccer assault. The company’s world-wide soccer footwear and apparel sales
are projected at more than $425 million for …scal 1998, up about 50% from a year earlier...”
Wall Street Journal, October 22, 1997, “Nike kicks in millions to sponsor soccer in U.S.”
While demand uncertainty is still unresolved, the recognition of demand endogeneity and
that, while initial demand was too low to justify entry by individual …rms, a coordinated
e¤ort may succeed, are important from the point of view of the present analysis.

A25. Proof of Proposition 3: The optimal path is “above” the competitive
path. We use function R(x; y). Let xet¡1 · xot¡1 < µ. We proceed by contradiction: suppose
that xet ¸ xot . Then:

R(xot¡1; x
o
t ¡ xot¡1) ¸ R(xet¡1; x

o
t ¡ xet¡1) > R(xet¡1; xet ¡ xet¡1)

The …rst inequality holds because, for …xed next period’s capacity x+ y; R(:; :) is increasing
in x. The second inequality follows from the monotonicity of R(:; :) in its second argument.
By the equilibrium condition, R(xet¡1; x

e
t ¡xet¡1) = c and together with the above inequality,

we have R(xot¡1; x
o
t ¡ xot¡1) > c which contradicts (6) since the last two terms in the RHS of

(6) are positive. Thus, xet < x
o
t .

Note that the discrepancy between the equilibrium and the optimal paths we identify
here is compatible with Schumpeter’s [1950] argument that competitive markets may be not
dynamically optimal, because small …rms cannot appropriate the returns of their investments.

The case of negative externalities: The case of negative demand feedbacks (m < 0)
corresponds to situations where the willingness of the consumers to pay for the good is
decreasing in the volume of past sales. Reasons for this pattern of behavior include receiving
negative information from previous buyers about the characteristics of the product, or what
is often referred to as the “snob e¤ect.”

For m < 0, there can be no unambiguous comparison of the two paths. The e¢cient
path may be either above or below the equilibrium path. There are two competing e¤ects.
On the one hand, the planner expands capacity more quickly because learning about the
potential demand, µ, is internalized. On the other hand, for m < 0, the planner wants to
expand less quickly, because today’s expansion decreases future demand. These e¤ects can
be demonstrated by a comparison of (3) and (6). The second term of the RHS of (6) is
positive, whereas the last term is negative. Which of the two e¤ects dominates depends on
the relative strength of the parameters.

Further, capacity expansion for the planner may stop at a price level at which entry by
the competitive market would have continued. Recall that competitive entry would stop
at time t if and only if pt < c(1 ¡ ¯). Clearly, at such a price, expansion by the planner
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will also stop. The reason is that, since with m < 0 the price never increases, further
capacity expansion will always decrease pro…ts (the loss would be c¡pt=(1¡¯) > 0 for each
additional unit, and the pro…tability of the already invested units will decrease, since the
price decreases). However, unlike the competitive case, the planning path may also stop at
some level xs with price ps higher than c(1¡ ¯). The reason is that the planner recognizes
the negative e¤ect that further expansion will have on the pro…tability of the previously
installed capacity. Thus, it is possible that the optimal strategy is to stop, with future pro…t
equal to psxs=(1 ¡ ¯). Even without considering the risk of exceeding the demand for one
period, increasing sales will decrease the price for all units of subsequent sales. Thus, the
per unit pro…t for the additional units has to be compared with the decreased pro…tability
of the installed capacity. If m < 0 is low enough, xs is large enough, and ¯ is large enough
(so that future pro…ts have enough value), then it is optimal to never increase capacity from
the level xs.

A26. Proof of Proposition 4: Entry with low initial demand. As discussed in the
text, clearly there in no entry in the competitive case. Now we move to optimal entry. (i)
Assume that there is investment x1 in the …rst period. If x1 < µ , the …rm enters period
two with positive updating about the demand, µ. It has also raised the price from p1 to
p2 = p1 +mx1 > p1. Thus, if the …rm has decided to invest in the …rst period, it must be
optimal for it to invest in the second period, and so on. It cannot be optimal for the …rm to
decide to have losses in the …rst period and then stop when demand turns out to be high.

(ii) Given (i) and the distribution F , the …rm can calculate the expected pro…t from
entering the market. By construction, the optimal path satis…es (6). The …rm will invest if
and only if the expected present value of pro…ts is positive; otherwise investment never takes
place. Furthermore, the value of the optimal expansion path is increasing and continuous
(for continuous F ) in m. For m = 0, this value is negative (since pt = p1 < c(1¡ ¯), for all
t). As m ! 1, on the other hand, the value becomes very large. It follows that there is a
unique ¹m, 0 < ¹m < 1, such that the value of the project is exactly zero. Investment takes
place if and only if m > ¹m.

The planner is not cash constrained. Thus, the planner can accumulate losses for
some time with the prospect of future pro…ts. Otherwise, there is an additional constraint
to consider and the set of markets that it is optimal to enter becomes smaller. On average,
stricter …nance constraints imply that a higher slope, m, is required for the project to
be undertaken. In addition, taking into consideration …nance constraints may change the
expansion path even for a market that it is still optimal to enter. The reason is that, even
when the optimal solution for the unconstrained problem is not feasible in the constrained
problem, the optimal solution to the constrained problem may still yield positive pro…t (that
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is, higher than the pro…t from not entering, which is zero). It may be interesting to further
examine, in this framework, the role of …nance constraints on investment in new markets.

A30. Policy implications and infant export industries. Further, consistency in the
treatment of established and infant industries was central in this policy: promotion would
end once either the industry matured or it failed to “succeed” within a period of time (in
which case the initial decision to support the industry was reversed on the basis of “new
information” that had been obtained along the way). The same discussion views dynamic
externalities among …rms as playing a central role in shaping industrial policies. In particular,
it was recognized that intra-industry externalities are important and “due to the fact that
one agent’s investments to obtain information can very signi…cantly reduce transaction costs
for access by other nearly agents to the same and closely related information.” (Pack and
Westphal [1986], p. 110).

A31. Proof of Proposition 5: The competitive path is S-shaped for m large
enough. To prove the Proposition we …rst prove the following.

Lemma. The di¤usion path is concave if y2 · y1. If y2 > y1 the path is S-shaped (unless
µ is low enough that entry stops while it is still increasing).

The proof of the Lemma is as follows. Suppose that yt · yt¡1 (or, equivalently, xt¡xt¡1 ·
xt¡1 ¡ xt¡2). Then,

¢pt = pt+1 ¡ pt = m(xt ¡ xt¡1) · m(xt¡1 ¡ xt¡2) = pt ¡ pt¡1 = ¢pt¡1

Thus, if y2 · y1; as t increases the “hazard rate” e¤ect becomes stronger (as capacity
increases), and the “demand shifting” e¤ect becomes weaker (¢pt · ¢pt+1), and therefore
yt is decreasing and the path is concave.

If y1 < y2 the path is initially convex, by construction. Eventually concavity sets in, as
capacity increases and the hazard rate becomes high enough. Thus, there is a T > 2 such
that ¢yt > 0 for 2 · t · T and ¢yt · 0 for t > T , that is, the di¤usion curve is S-shaped.
Of course, µ may be low so that starting from y1 < y2; the path is convex until entry stops.
Note that when y2 ¸ y1,then ¢p2 ¸ ¢p1 but y3 may be either larger or smaller than y2:
This completes the proof of the Lemma.

Further, it is easy to see that if ¹µ · 2x1; then y2 < y1; and, by the above Lemma, the
path is necessarily concave. Using (4), ¹µ · 2x1, is equivalent to

2c(¹µ ¡ µ)¡ ¹µ(p1 + ¯c) · 0:

Thus we assume 2c(¹µ ¡ µ) ¡ ¹µ(p1 + ¯c) > 0 in Proposition 5, otherwise the path has no
chance to be S-shaped.
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To prove Proposition 5, note that by the above Lemma, it is enough to show that m >

m¤ , y2 > y1: But y2 > y1 , x2 ¡ x1 > x1 , x2 > 2x1 ,

¹µ ¡ c2(¹µ ¡ µ)
(p2 + ¯c)(p1 + ¯c)

> 2¹µ ¡ 2c(¹µ ¡ µ)
(p1 + ¯c)

, p2 ¸ c2(¹µ ¡ µ)
2c(¹µ ¡ µ)¡ ¹µ(p1 + ¯c)

¡ ¯c.

Now, p2 = p1+mx1 with x1 given by (4) and substituting accordingly we obtain m > m¤

Direct calculations, keeping in mind that p1 > c(1¡ ¯); show that m¤ > 0.
A32. The shape of the optimal expansion path.
First note that we know that yo1 > y

e
1:When we compare the optimal and the equilibrium

paths at t = 2 we …nd three di¤erences. First, since yo1 > y
e
1 the hazard of overshooting is

higher for the optimal path; thus there is a tendency for yo2 < ye2: Second, the investment
incentives that were present at t = 1 are still present at t = 2 and this creates a tendency
for yo2 > ye2. Third, yo1 > ye1 also implies higher willingness of the consumers to pay at
t = 2 : p(yo1) > p(ye1). This last factor also creates an incentive for yo2 > ye2, and it is the
reason why the optimal path can be, in principle, S-shaped even when the competitive path
is not.

We now examine how the parameters a¤ect the time path of investment. First, for ¯ = 0
the competitive equilibrium and the optimal paths are identical. This comes from equation
(6) and should also be intuitively clear because with ¯ = 0 investment issues (in learning
or market cultivation) become irrelevant. By continuity of the optimal solution we conclude
that for ¯ close to 0 and for parameter values that make the equilibrium path S-shaped (that
is, m > m¤; see Proposition 5), the optimal path will be S-shaped as well. As ¯ increases
towards 1, the incentives for investment become higher (since the present value of the rewards
is higher), and xo1 increases relative to investments in subsequent periods. It follows that,
higher values of ¯ make it harder for optimal paths to be S-shaped. Now we turn to m: If
m = 0 (…xed demand) then (7) becomes linear and the stable manifold is the saddle path
itself (see the analysis of the dynamical system in topic A23 above). Thus if m = 0, the
optimal solution is equation (A23.3) (see topic A23) which implies that the optimal entry
path is monotonically decreasing (that is, the expansion path is concave). For values of m
close to 0 the solution will also be concave as well (by continuity). As m increases it is
possible, for some parameter values, that yo1 < y

o
2 and the path is S-shaped. However, as m

increases we …nd that for high enough values of m, xo1 becomes very high so that the path
is necessarily concave. Formally, this can be shown as follows. It is easy to verify (using
(A23.5)) that ¹z ! ¹µ as m ! +1, which since ¹z · xo1 · ¹µ, implies that xo1 is close to ¹µ for
m high enough. Thus, the optimal path is concave for low and for high values of m and can
be S-shaped for intermediate values.
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Finally, the fact that the optimal path cannot be outside of area A (see the topic A23
above and Figure A4) can be used to provide some more precise information. For example,
since xo = 0 we know that xo1 ¸ ¹z (where ¹z is de…ned in (A23.5)). We also know that
xo2 <

¹µ. Thus, since yo2 ¸ yo1 , xo2 ¸ 2xo1, we know that if ¹µ < 2¹z then yo2 < y
o
1. Using the

equation for ¹z, it is easy to show that ¹µ < 2¹z , 2(p+ ¯c) +m¹µ¯ > 4c. Thus, we have that
if 2(p+ ¯c) +m¹µ¯ > 4c the optimal path satis…es yo2 < y

o
1.

A33. Entry and di¤usion paths. We discuss here brie‡y some regularities that
have been empirically documented in new markets and are related to our analysis. Before
proceeding to the discussion, note that, in many new markets, technology changes heavily
in‡uence the dynamics. Our analysis abstracts away from technology improvement issues
to focus on informational concerns and demand endogeneity. Technology factors have been
studied in a number of papers (see e.g. Jovanovic and Lach [1989], Jovanovic and MacDonald
[1994], and Klepper [1996].) The analysis here should be viewed as a complement, not a
substitute for this work. In markets where both demand endogeneity and technology factors
are important, the insights from both approaches have to be combined.

There are a number of regularities related to our analysis (see e.g. Gort and Klepper
[1982], Dunne, Roberts and Samuelson [1988], Klepper and Graddy [1990], Klepper [1996],
Geroski [1995], and references therein). First, entry and capacity expansion are gradual,
not instantaneous. Second, total invested capacity in the industry grows over time until
it reaches a maximum level (when a “shake-out” stage starts). In our framework, …rms
enter over time as new information about the demand becomes available. Third, following
the initial entry into the market, entry rates are often increasing over a period of time and
then start decreasing or, in other cases, achieve a maximum at the time of initial entry and
decrease afterwards. In either case, eventually entry rates become small (see e.g. Figure 1
in Klepper [1996], p. 564). These two entry patterns imply cumulative expansion paths that
are either S-shaped or concave.

A36. Epidepic-type models of di¤usion. The marketing literature has provided a
number of studies on the di¤usion of new products. This literature has been largely based
on an epidemic-type approach, as formulated by Bass [1969]. Central in this approach are
two parameters, the coe¢cient of “innovation” and of “imitation.” A larger coe¢cient of
imitation may imply that early purchases in‡uence later purchases to a larger extent, and
comparing such coe¢cients could be suggestive of di¤erences across markets. Note, however,
that a key di¤erence from our work is that the Bass [1969] class of models starts with a
speci…cation of these relations at the level of sales. Instead, our approach takes as given only
the demand and it is thus possible, for example, to derive di¤erent predictions for the paths
in a competitive or a monopolistic market.
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A39. Empirical studies and extensions. When taking the basic ideas to the data, the
framework needs to be extended to allow for aspects of reality not present in the model. Two
such important dimensions are mentioned here. First, there is a body of work demonstrat-
ing that …rm heterogeneity, exit, and technology improvement are important in industry
dynamics. Firms di¤er with respect to their technology and information, selection takes
place leading to less e¢cient …rms dropping out, and products become less costly to pro-
duce. Second, demand endogeneity is captured in the model in a simple parametric way but
may take a number of di¤erent forms in reality. For example, the formal model assumes that
past sales increase the consumers’ willingness to pay but the potential demand, µ; remains
una¤ected. Assuming that we also have an increasing function µ(xt¡1) would leave the main
results qualitatively una¤ected as long as, in addition to the growth component, the market
size also had a factor that …rms learn about.

We also discuss here two other possible extensions. First, it is worth examining more gen-
eral demand structures that imply di¤erent monopoly and socially optimal paths. Clearly,
the model presented here overemphasizes the bene…ts from concentration since, by construc-
tion, the monopoly and the planning problems coincide. In other words, the issue here is
why, due to dynamic considerations and the presence of externalities, the competitive mar-
ket will expand at a rate that is too low. Before proceeding to policy recommendations
one has to also consider the standard monopoly distortions that would tend to make a mo-
nopolist produce at suboptimal levels. In a more general model, an interesting trade-o¤
would appear. More concentrated industries (monopolies, in the extreme case) would tend
to internalize the externalities and invest more, but would also tend to produce less than
the optimum in later stages. One can conjecture that higher concentration may be desirable
for export-oriented industries (where consumers’ welfare considerations do not arise) but
not for industries that are primarily oriented to the domestic market. A second extension
is the examination of investment paths when there is more than one competing product
(such as di¤erent technological standards). Then tomorrow’s demand for a given product
would depend positively on past sales of the same product but negatively on the past sales
of the competing products. In addition, when deciding to invest in this market, …rms have
demand uncertainty that is partly due to the behavior of their competitors. Several issues
arise related to the optimal number and network-size of competing products, the pattern of
entry and prices, and path-dependence.

14



² A list of references for this Appendix follows.
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