Supplemental Materials for Begoña Garcia Mariñoso, "Technological incompatibility, endogenous switching costs and lock in" The Journal of Industrial Economics

Appendix for Section V: Technological Choice.

a. Ex-ante profit comparisons: Comparing ex-ante profits with incompatibility (5) and compatibility (6):

1. For $\mathrm{c}_{\mathrm{x}} \leq 3 \mathrm{~L}, \pi_{E A}^{C}-\pi_{E A}^{I}=\delta \cdot c_{x} / 3 \cdot\left(6 L-c_{x}\right) / 6-F$
2. For $c_{x} \geq 3 L, \pi_{E A}^{C}-\pi_{E A}^{I}=\delta \cdot L^{2} / 2-F$
b. Welfare Comparisons: At $\mathrm{t}=1$ welfare is the same under all technological regimes: $W_{1}=L w-c L-L^{2} / 4$. Second period welfare determines which regime is best. The expressions for second period surplus and welfare under incompatibility and compatibility are:

- For incompatibility and $c_{x} \leq 3 L$:

$$
\begin{align*}
& S_{2}^{I}=\int_{0}^{L / 2+c_{x} / 6} v-x-\left(L+c_{y}+c_{x} / 3\right) \partial x+\int_{L / 2+c_{x} / 6}^{L} v-(L-x)-\left(L+c_{y}+2 / 3 c_{x}\right) \partial x= \\
& =L v-c_{y} L-5 / 4 L^{2}+c_{x}^{2} / 36-L c_{x} / 2 \tag{13}\\
& W_{2}^{I}=L v-c_{y} L-L^{2} / 4+5 c_{x}^{2} / 36-L c_{x} / 2
\end{align*}
$$

- For incompatibility and $c_{x}>3 L$:

$$
\begin{align*}
& S_{2}^{I}=\int_{0}^{L} v-x-(c-L) \partial x=L v-c L+L^{2} / 2 \tag{14}\\
& W_{2}^{I}=L v-c_{y} L-L^{2} / 2
\end{align*}
$$

- For compatibility:

$$
\begin{align*}
& S_{2}^{C}=\int_{0}^{L / 2} v-x-\left(c_{y}+L\right) \partial x+\int_{L / 2}^{L} v-(L-x)-\left(c_{y}+L\right) \partial x=L v-c_{y} L-5 L^{2} / 4 \tag{15}\\
& W_{2}^{C}=L v-c_{y} L-L^{2} / 4-2 F
\end{align*}
$$

Comparing (13) with (15) and (14) with (15):

1. For $c_{x} \leq 3 L, W_{E A}^{C}-W_{E A}^{I}=\delta c_{x} / 36^{*}\left(18 L-5 c_{x}\right)-2 F$
2. For $c_{x} \geq 3 L, W_{E A}^{C}-W_{E A}^{I}=\delta L^{2} / 4-2 F$

c. Proof of Proposition 4

- For $c_{x} \leq 3 L$:

If $F \leq \delta \cdot c_{x} \cdot\left(18 L-5 \cdot c_{x}\right) / 72$, then $: W_{E A}^{C} \geq W_{E A}^{I}$ and $\pi_{E A}^{C} \geq \pi_{E A}^{I}$,
if $\delta \cdot c_{x} \cdot\left(18 L-5 \cdot c_{x}\right) / 72 \leq F \leq \delta \cdot c_{x} \cdot\left(6 L-c_{x}\right) / 18$ then: $W_{E A}^{C} \leq W_{E A}^{I}$ and $\pi_{E A}^{C} \geq \pi_{E A}^{I}$,
and finally, if $F \geq \delta \cdot c_{x}\left(6 L-c_{x}\right) / 18$ then: $W_{E A}^{C} \leq W_{E A}^{I}$ and $\pi_{E A}^{C} \leq \pi_{E A}^{I}$.

- For $c_{x} \geq 3 L$:

If $F \leq \delta \cdot L^{2} / 4$, then $W_{E A}^{C} \geq W_{E A}^{I}$ and $\pi_{E A}^{C} \geq \pi_{E A}^{I}$,
if $\delta \cdot L^{2} / 4 \leq F \leq \delta \cdot L^{2} / 2$, then $W_{E A}^{C} \leq W_{E A}^{I}$ and $\pi_{E A}^{C} \geq \pi_{E A}^{I}$
and if $F \geq \delta \cdot L^{2} / 2$, then $W_{E A}^{C} \leq W_{E A}^{I}$ and $\pi{ }_{E A}^{C} \leq \pi{ }_{E A}^{I}$.

Proposition 4 follows.

Appendix for Section VI: Brand Loyalty.

a. Second Period

a.1- Incompatibility: With incompatibility, indifferent consumers and profits are as reported in (1) and (2) in section 3. Hence, Lemma 1 and Proposition 2 hold.
a.2-Compatibility: Indifferent consumers in segment A are as reported brand loyalty section posted in the web: $I_{A M}^{A}, I_{B M}^{A}$ and $I_{A B}^{A}=\left(P_{B}-P_{A Y}+L\right) / 2$ (indifferent between $\mathrm{X}_{\mathrm{A}} \mathrm{y}_{\mathrm{A}}$ and $\mathrm{X}_{\mathrm{B}} \mathrm{y}_{\mathrm{B}}$). Similarly, for segment B: $I_{B M}^{B}=P_{B Y}-P_{A Y}+L / 2, I_{A M}^{B}=\left(L / 2+P_{B X}\right)$ and $I_{A B}^{B}=\left(P_{B Y}-P_{A}+L\right) / 2$.

Two regimes can arise: $I_{A M}^{A} \geq I_{B M}^{A}$, implying that no consumer in segment A is willing to mix and match, and $I_{A M}^{A} \leq I_{B M}^{A}$, where some consumers buy $\mathrm{X}_{\mathrm{A}} \mathrm{y}_{\mathrm{B}}$. Note that in symmetric equilibrium if $0 P_{J X}$ >0, there is mix and match in both segments.

(i) Proof of Lemma 5

Firm A's profit with mix and match is as reported in (12). Since $I_{A M}^{A}=I_{B M}^{B}$, (12) can be expressed as:

$$
\begin{equation*}
\pi_{2 A}=\left(P_{A Y}-c_{y}\right)\left(I_{A M}^{A}\right)+\left(P_{A X}-c_{x}\right)\left(\sigma_{B} / L . I I_{A M}^{B}\right) \tag{16}
\end{equation*}
$$

Standard optimisation of (16) yields reaction functions for Firm A: $P_{B Y}-2 P_{A Y}+L / 2+c_{y}=0$ and $L / 2-2 P_{A X}+c_{x}=0$. By finding their intersection with reaction functions for firm B the prices market
shares and profits in Lemma A result. To check that these prices are profit maximizing one must check that at given rival's prices no firm wants to set prices such that the regime reverts to a non- mix and match regime for some segment.

- Taking $P_{B Y}=L / 2+c_{y}$ and $P_{B X}=1 / 2\left(c_{x}+L / 2\right)$ as given, indifferent consumers are:
$I_{A B}^{A}=7 L / 8+c_{y} / 2+c_{x} / 4-P_{A Y} / 2, X_{A M}^{A}=L+c_{y}-P_{A Y}$, and
$I_{B M}^{A}=3 L / 4+c_{x} / 2$
$I_{A B}^{B}=3 L / 4+c_{y} / 2-P_{A} / 2, X_{A M}^{B}=L / 2-P_{A X}$, and
$I_{B M}^{B}=L+c_{y}-P_{A Y}$
There is mix and match in segment A if $0 \leq P_{A Y}-L / 4-c_{y}+c_{x} / 2$
and no mix and match in segment A if $0 \geq P_{A Y}-L / 4-c_{y}+c_{x} / 2$
There is mix and match in segment B if $0 \leq L / 2+c_{y}+P_{A X}-P_{A Y}$
and no mix and match in segment B if $\quad 0 \geq L / 2+c_{y}+P_{A X}-P_{A Y}$

Firm A can deviate from the mix and match regime in three ways: By setting prices such that: there is only mix and match in segment B (deviation 1), there is only mix and match in segment A (deviation 2), or there is no mix and match in either segment (deviation 3). I prove that these three deviations are not profitable for firm A .

Deviation 1: The profit function for firm A is:
$\pi_{D 1}=\left(P_{A Y}-c_{y}\right)\left(\sigma_{A} / L \cdot I_{A B}^{A}+\sigma_{B} / L \cdot I_{B M}^{B}\right)+\left(P_{A X}-c_{x}\right) \sigma_{B} / L \cdot I_{B M}^{B}$
Then, the optimisation problem for firm A is to:
$\operatorname{Max}_{P_{A Y}, P_{A X}} \pi_{A}$ such that:
(18), (19) and $P_{A Y} \geq 0, P_{A X} \geq 0$.
and the Kuhn Tucker conditions to be satisfied by the solution to this programme are:
$\partial \pi_{A} / \partial P_{A Y}-\lambda_{1}-\lambda_{2}=0$
$\partial \pi_{A} / \partial P_{A X}+\lambda_{2}=0$
$\lambda_{1} \cdot\left(L / 4+c_{y}-c_{x} / 2-P_{A Y}\right)=0$
$\lambda_{2} \cdot\left(L / 2+c_{y}-P_{A Y}+P_{A X}\right)=0$
$P_{A X} \geq 0, P_{A Y} \geq 0, \lambda_{1} \geq 0, \lambda_{2} \geq 0$
where λ_{1} is the multiplier associated with (18) and λ_{2} is the multiplier associated with (19).
The solution is:
$\lambda_{I}=\sigma_{A} / L \cdot\left(3 c_{x} / 4+5 L / 8\right)+\sigma_{B} / L \cdot\left(L / 2+c_{x}\right)$
$\lambda_{2}=0$
$P_{A Y}=L / 4+c_{y}-c_{x} / 2$
$P_{A X}=L / 4+c_{x} / 2$
and the value of profit at this solution is:
$\pi_{D 1}^{*}=\left(L / 4-c_{x} / 2\right) \cdot\left(\sigma_{A} / L \cdot\left(3 L / 4+c_{x} / 2-c_{y}\right)+\sigma_{B}\right)$
This value is smaller than the value of profits at the candidate equilibrium in Lemma 5.

Deviation 2: The profit function for firm A is:
$\pi_{D 2}=\left(P_{A Y}-c_{y}\right)\left(\sigma_{A} / L \cdot I_{A M}^{A}\right)+\left(P_{A}-c_{x}-c_{y}\right) \sigma_{B} / L \cdot I_{A B}^{B}$
Then, the optimisation problem for firm A is to:
$\operatorname{Max}_{P_{A Y}, P_{2 X}} \pi_{A}$ such that:
(17), (20) and $P_{A Y} \geq 0, P_{A X} \geq 0$.
and the Kuhn Tucker conditions to be satisfied by the solution to this programme are:
$\partial \pi_{A} / \partial P_{A Y}+\lambda_{1}+2 \lambda_{2}=0$
$\partial \pi_{A} / \partial P_{A}-\lambda_{2}=0$
$\lambda_{1}\left(-L / 4-c_{y}+c_{x} / 2+P_{A Y}\right)=0$
$\lambda_{2}\left(-L / 2-c_{y}+2 P_{A Y}-P_{A}\right)=0$
$P_{A} \geq 0, P_{A Y} \geq 0, \lambda_{1} \geq 0, \lambda_{2} \geq 0$
where λ_{1} is the multiplier associated with (17) and λ_{2} is the multiplier associated with (20).
The solution is:
$\lambda_{1}=0$
$\lambda_{2}=\sigma_{B} / L \cdot\left(c_{y}+c_{x} / 2+3 L / 4-1 /\left(2 \sigma_{B}+\sigma_{A}\right) \cdot\left[\sigma_{B} \cdot\left(2 c_{y}+c_{x}+3 L / 2\right)+\sigma_{A} \cdot\left(c_{y}+L / 2\right)\right]\right)$
$P_{A Y}=L / 4+c_{y} / 2+1 / 2 \cdot\left[1 /\left(2 \sigma_{B}+\sigma_{A}\right) \cdot\left(\sigma_{B} \cdot\left(2 c_{y}+c_{x}+3 L / 2\right)+\sigma_{A} \cdot\left(c_{y}+L / 2\right)\right)\right]$
$P_{A}=1 /\left(2 \sigma_{B}+\sigma_{A}\right) \cdot\left[\sigma_{B} \cdot\left(2 c_{y}+c_{x}+3 L / 2\right)+\sigma_{A} \cdot\left(c_{y}+L / 2\right)\right]$
and the value of profit at this solution is:
$\pi_{D 2}^{*}=\frac{1}{2\left(L+\sigma_{B}\right)^{2}} \cdot\left(L^{2}+\sigma_{B}\left(L / 2-c_{x}\right)\right) \cdot\left(L^{3} / 2+3 L^{2} \sigma_{B} / 4+L \sigma_{B}^{2} / 4-3 \sigma_{B}^{2} c_{x} L / 2+\sigma_{B} c_{x} L^{2} / 2\right)$

This value is smaller than the value of profits at the candidate equilibrium in Lemma 5.

Deviation 3: The profit function for firm A is:
$\pi_{D 3}=\left(P_{A Y}-c_{y}\right) \cdot \sigma_{A} / L \cdot I_{A B}^{A}+\left(P_{A}-c_{x}-c_{y}\right) \cdot \sigma_{B} / L \cdot I_{A B}^{B}$
Then, the optimisation problem for firm A is to:
$\operatorname{Max}_{P_{2 A x}, P_{2 X}} \pi_{A}$ such that:
(18), (20) and $P_{A Y} \geq 0, P_{A X} \geq 0$
and the Kuhn Tucker conditions to be satisfied by the solution to this programme are:
$\partial \pi_{A} / \partial P_{A Y}-\lambda_{I}+2 \lambda_{2}=0$
$\partial \pi_{A} / \partial P_{A}-\lambda_{2}=0$
$\lambda_{I} \cdot\left(L / 4+c_{y}-c_{x} / 2-P_{A Y}\right)=0$
$\lambda_{2} \cdot\left(-L / 2-c_{y}+2 P_{A Y}-P_{A}\right)=0$
$P_{A X} \geq 0, P_{A Y} \geq 0, \lambda_{I} \geq 0, \lambda_{2} \geq 0$
where λ_{I} is the multiplier associated with (18) and λ_{2} is the multiplier associated with (20).
The solution is:
$\lambda_{I}=3 \sigma_{B} \cdot\left(c_{x}+L / 2\right) / L+\sigma_{A}\left(5 L / 8+3 c_{x} / 4\right)$
$\lambda_{2}=3 \sigma_{B} \cdot\left(c_{x}+L / 2\right) /(2 L)$
$P_{A Y}=L / 4+c_{y}-c_{x} / 2$
$P_{A}=c_{y}-c_{x}$
and the value of profit at this solution is:
$\pi_{D 3}^{*}=\left(3 L / 4+c_{x} / 2\right)\left(\sigma_{A} / 4-\left(c_{x} \sigma_{A}\right) /(2 L)-2 c_{x} \sigma_{B} / L\right)$
This value is smaller than the value of profits at the candidate equilibrium in Lemma 5.
b. First Stage: At $\mathrm{t}=1$ the indifferent consumer is: $I=Q_{B}-Q_{A}+L / 2$. Firm A (and equivalently, firm B) chooses Q_{A} to maximize ex-ante profits: $\left(Q_{A}-c_{x}\right) I+\delta \cdot \pi_{2 A}^{S}$ with $\mathrm{S}=\{\mathrm{C}, \mathrm{I}\}$.

- Incompatibility: Standard optimisation yields prices for firm J :
(i) For $c_{x} \leq 3 L, Q_{J}=L / 2+c_{x}-2 \delta c_{x} / 3$ and $\sigma_{J}=L / 2$ and
(ii) For $c_{x} \geq 3 L, Q_{J}=L / 2+c_{x}-\delta\left(c_{x}-L\right)$ and $\sigma_{J}=L / 2$.
- Compatibility: Standard optimisation yields prices for firm J :
(i) For $c_{x} \leq L / 2, Q_{J}=L / 2+c_{x}+\delta / L\left(L / 4-c_{x} / 2\right)^{2}$ and $\sigma_{J}=L / 2$

Substituting these prices and market shares in the relevant profit functions, I obtain the value for profits reported in Table 1.
c. Lemma B: Comparing ex-ante profits for compatibility and incompatibility when $c_{x} \leq L / 2$ and $F=0: \pi_{E A}^{I}-\pi_{E A}^{C}=\delta / 72\left(-14 c_{x}^{2}-6 c_{x} L+27 L^{2} / 2\right)>0$. Lemma B follows.
d. Welfare (Proposition 7): The welfare comparison only depends on welfare levels at $\mathrm{t}=2$. For $c_{x} \leq L / 2$ expression (β) gives the levels of welfare for incompatibility. With compatibility, if $F=0$, consumer surplus and welfare is:

$$
\begin{aligned}
& \quad S_{2}^{C}=\int_{0}^{L / 2}\left(v-P_{A Y}-x\right) \partial x+\int_{L / 2}^{3 L / 4+c_{x} / 2}\left(v-P_{B Y}-L / 2\right) \partial x+\int_{3 L / 4+c_{x} / 2}^{L}\left(v-P_{B}-(L-x)\right) \partial x= \\
& \quad=\left(32 L v-32 c_{y} L+4 c_{x}^{2}-4 c_{x} L-27 L^{2}\right) / 32 \\
& W_{2}^{C}=S_{2}^{C}+\pi_{2}^{C}=\left(32 L v-32 c_{y} L+12 c_{x}^{2}-12 c_{x} L-9 L^{2}\right) / 32
\end{aligned}
$$

Comparing (21) and (13): $W_{E A}^{C}-W_{E A}^{I}=\delta\left(17 c_{x}^{2} / 72+c_{x} L / 8-L^{2} / 32\right)$. Proposition 7 follows.

