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A. Proofs of Section V Results   

 First note that, for simplicity, we ensure interior emission choices by assuming 

that, for δ∈{0,1}, ⏐cs(0,δ)⏐ is arbitrarily large and ⏐cs(s,δ)⏐≈0 for all s above a given 

(positive) s
_
 .  The bound s

_
  represents a "zero abatement" level of per-unit emissions and 

is thus assumed to satisfy: c(s
_
 ,1)≈c(s

_
 ,0).  Second, we establish a sequence of 

preliminary results. 

 Result I.  (a) te(s*(1))<t1, and (b) te(s*(0)<t0. 

 Proof.  (a) Follows from eq. (14).  (b) From (21), 

 te(s*(0)) = [C*
1 -c(s*(0),0)]/s*(0) = {[C*

1 -C*
0 ]/s*(0)}+t0 < t0, 

where the inequality is due to C*
1 <C*

0 . 

 Result II.  s*(1)<s(te(s*(1)),0), where 

(A1)    s(t,δ) ≡ argmin c(s,δ)+ts 

 Proof.  Follows from Result I(a), sδ()<0, st()<0, and s*(1)=s(t1,1). 

 Result III.  cs(s*(1),0)+te(s*(1))<0. 

 Proof.  Follows from Result II, the definition of s(t,δ) in (A1) (where 

cs(s(),δ)+t=0), and css>0. 

 Result IV.  cs(s
_
 ,0)+te(s

_
 )>0. 

 Proof.  With cs(s
_
 ,0)≈0, c(s*(1),1)>c(s

_
 ,1)≈c(s

_
 ,0), and t1s*(1)>0, we have (using 

(21)) 

  cs(s
_
 ,0)+te(s

_
 ) ≈ te(s

_
 ) = {c(s*(1),1)+t1s*(1)-c(s

_
 ,0)}/s

_
  > 0. 

 Result V.  There is a unique sL
0 ∈(s*(1),s

_
 ) such that (a) cs(sL

0 ,0)+te(sL
0 )=0, (b) 

cs(sL,0)+te(sL)<0 for all sL<sL
0 , and (c) cs(sL,0)+te(sL)≥0 for all sL≥sL

0 . 

 1



 Proof.  By Results III and IV, and the Intermediate Value Theorem, there exists 

an sL
1 ∈(s*(1),s

_
 ):cs(sL

1 ,0)+te(sL
1 )=0.  We can thus define sL

0  =  min sL: sL>s*(1) and 

cs(sL,0)+te(sL)=0.  By construction, this sL
0  satisfies properties (a) and (b).  Now suppose 

that sL
0  did not satisfy property (c), so that there is an sL

2 >sL
0 :cs(sL

2 ,0)+te(sL
2 )<0.  By 

differentiability of (cs(sL,0)+te(sL)), there must then exist an sL
3 ∈[sL

0 ,sL
2 ): cs(sL

3 

,0)+te(sL
3 )=0 and css(sL

3 ,0)+[∂te(sL
3 )/∂sL]<0.  However, with css()>0 and (from (21)),  

(A2)   {cs(sL,0)+te(sL)} =s   - dte(sL)/dsL, 

css()+[∂te()/∂sL]>0 whenever cs()+te()=0, thus contradicting our premise that property (c) 

did not hold.  Together, properties (a)-(c) imply uniqueness of sL
0 . 

 Result VI.  s*(0)<sL
0 (with sL

0 defined in Result V) . 

 Proof.  From the definitions of s*(0), t0, and s(t,δ) (in (A1)) 

(A3)    s*(0)=s(t0,0) < s(te(s*(0)),0), 

where the inequality follows from Result I(b) and st()<0.  (A3) further implies (using the 

definition of s(t,δ) and css>0) 

(A4)    cs(s*(0),0)+te(s*(0)) < 0. 

Result VI now follows from (A4) and Result V. 

 Result VII.  cs(sL,0)+te(sL)<0 for all sL∈[s*(1),s*(0)]. 

 Proof.  Follows from Results V and VI. 

 Result VIII.  te(s*(0))<t1. 

 Proof.  From eq. (21), 

(A5)  te(s*(0)) = [C*
1 -c(s*(0),0)]/s*(0) < [c(s*(0),1)+t1s*(0)-c(s*(0),0)]/s*(0)  

      = t1 + [c(s*(0),1)-c(s*(0),0)]/s*(0) < t1, 

where the first inequality is due to the definition of C*
1 =min c(s,1)+t1s, and the final 

inequality is due to cδ<0. 

 Result IX.  For sL∈[s*(1),s*(0)], dte(sL)/dsL>0.   

 Proof.  Follows from Result VII and (A2). 

   Proof of Observation 1.  Follows from Results I(b), VIII, and IX.  QED. 
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 Proof of Corollary 1.  With te(sL)<t0 (Observation 1) and st()<0, we have: 

s(te(sL),0) > s(t0,0) = s*(0) ≥ sL.  Similarly, with te(sL)<t1 (Observation 1), we have: 

s(te(sL),1) > s(t1,1) = s*(1) = sW.  QED. 

 Proof of Observation 3.  If 

(A6)   ∆ ≡ [W*(1)-W*(0)] - πB(s*(0)) > 0 

then the observation follows from eq. (20) (where πB≡πB(s*(1))) and the Intermediate 

Value Theorem.  Expanding πB(s*(0)) from (22), we have 

(A7) πB(s*(0)) = (C*
0 -C*

1 )Q*(1)+ {t1s*(1)-t0s*(0)+[C*
1 -c(s*(0),0)][1-(s*(1)/sL)]}. 

Substituting (A7) into (A6), using eq. (18), and recalling that tδ=D'(E*(δ)) and 

E*(δ)=s*(δ)Q*(δ), we have 

(A8)  ∆ = X +t0s*(0)(Q*(1)-Q*(0)) + [D(E*(0))-D(E*(1))]  

   - [C*
1 -c(s*(0),0)][1-(s*(1)/sL)]Q*(1), 

with (recalling Figure 1, where X corresponds with the negative of area c) 

(A9)  X ≡ ⌡⌠
Q(C*

0)

Q(C*
1)
 (P(Q)-C*

0) dQ > (C*
1 -C*

0 )(Q*(1)-Q*(0)). 

Using (A9), and substituting te(s*(0)) from (A5),  

(A10) ∆ > [C*
1 -c(s*(0),0)][Q*(1)(s*(1)/s*(0))-Q*(0)] + [D(E*(0))-D(E*(1))] 

 = [D(E*(0))-te(s*(0))E*(0)] - [D(E*(1))-te(s*(0))E*(1)] = ⌡⌠
E*(1)

E*(0)
   [D'(E)-

te(s*(0))]dE 

Eq. (A10), Result VIII, and E*(1)≤E*(0) (Assumption 1) now imply 

(A11)  ∆ > ⌡⌠
E*(1)

E*(0)
   [D'(E)-t1]dE ≥ 0, 

where the last inequality is due to the definition of t1 (=D'(E*(1))), D"()≥0, and 

E*(0)≥E*(1) (Assumption 1).  (A11) establishes the desired inequality, (A6).  QED. 
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B. Section VI:  Proof that Firm 1 Will Truthfully Report  

Under Optimal Government Policies 

 Firm 1's profit from a report of δ1r, given a technology δ1, are (with subsequent 

truthful reporting by firm 2): 

 π*(δ1r;δ1) ≡ EI2 { ⌡⌠
0

min(δ1r,δ1)
  π(δ1r,δ2;δ1) f(δ2;I2) dδ2}, 

where EI2 is firm 1's expectation operator over firm 2's R&D investment I2 and, per the 

logic given in the paper, π(δ1r,δ2;δ1)=0 if δ1r<δ2 or δ1≤δ2.  For δ1r<δ1,  

    ∂π*()/∂δ1r = EI2 { π(δ1r,δ1r;δ1)f(δ1r;I2) + ⌡⌠
0

δ1r
  [∂π(δ1r,δ2;δ1)/∂δ1r] f(δ2;I2) dδ2 } > 0, 

where the inequality is due to π(δ1r,δ2;δ1)>0 for δ2=δ1r<δ1, and the analog for eq. (28) 

(∂π(δ1r,δ2;δ1)/∂δ1r>0 for δ2≤δ1r<δ1).  For δ1r≥δ1,  

 ∂π*()/∂δ1r = EI2 { ⌡⌠
0

δ1
  [∂π(δ1r,δ2;δ1)/∂δ1r] f(δ2;I2) dδ2 }<=  0    when    δ1r >= δ1, 

with the sign relation again due to the analog for eq. (28) (∂π(δ1r,δ2;δ1)/∂δ1r <=  0 when 

δ1r >= δ1>δ2).  Thus, the expected firm 1 profit π*() is maximized with a truthful report, 

δ1r=δ1. 
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C. Extension: Efficient Taxes and Standards Without Assumption 1 

 i. Section V.  Proposition 1, Observations 1-3, and Corollary 1 give us the 

following revised statement of Proposition 2: 
 Proposition 2'. If E*(1)<E*(0) (or πΒ(s*(0))<W*(1)-W*(0)), then fully efficient 

outcomes are produced by the following policy of emission taxes and per-unit-output 

emission standards: (1) Pigovian emission taxes (with optional first-best emission 

standards) in the symmetric technology cases (A) and (C); and (2) for the asymmetric 

technology case (B), a first-best "winner" standard, a more lax environmental standard 

for the "loser," and an emission tax that is less than its Pigovian counterpart:  sW=s*(1), 

sL=sL
* ∈(s*(1),s*(0)), te=te(sL

* )<t1. 

 When the prior conditions of Proposition 2' are violated, we impose a plausible 

restriction on post-innovation emission standards in our asymmetric technology case (B):  

Because it is implausible for innovation to spur a relaxation in environmental 

performance standards, we restrict the case (B) emission standards to be no more lax than 

would prevail without innovation, max(sW,sL)≤s*(0).    

 In view of Proposition 2', the remaining possibility is that emissions rise with 

innovation (E*(1)>E*(0)) and, in addition, the most lax loser standard possible 
(sL=s*(0)) still provides firms with an incentive to overinvest in R&D (πΒ(s*(0))>W*(1)-

W*(0)).  For this circumstance, the following policy can optimally counter the persistent 

overinvestment problem: (1) set the environmental standards to maximally differentiate 

between the winning and losing firms, sW=s*(1) and sL=s*(0); (2) lower the emission tax 

te below its ex-post efficient level, te<te(s*(0)); and (3) compensate for the lower 

emission tax by levying a positive output tax, tq>0, that preserves efficient pricing, 

(C1)   tq=tq(te) tq:  c(s*(0),0)+tes*(0)+tq = C1
* . 

Because the losing firm emits more pollutants per-unit-output than does the winning firm 

(s*(0)>s*(1)), the reduced emission tax lowers the losing firm's per-unit-output costs 

more than it does for the winner.  The winner's reduced cost advantage in turn lowers its 
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profits and the associated incentive to invest in R&D.  By lowering the emission tax 

sufficiently far (and raising the output tax in tandem), the overinvestment problem can be 

cured. Formally, this policy gives rise to winner profits of 
(C2)  πΒ

so(te)  = {[c(s*(0),0)+tes*(0)+tq(te)] - [c(s*(1),1)+tes*(1)+tq(te)] Q*(1) 

   = {c(s*(0),0)-c(s*(1),1) + te(s*(0)-s*(1))}Q*(1), 

where the second equality is obtained by substituting for tq() from eq. (C1), and 

differentiating reveals that the winner's profits decline with a reduced emission tax, 
∂πΒ

so(te) /∂te=(s*(0)-s*(1))Q*(1)>0. 

 Proposition 2". If E*(1)>E*(0) and πΒ(s*(0))>W*(1)-W*(0), then fully efficient 

outcomes can be prompted by a policy of the following form: (1) Pigovian emission taxes 

in cases (A) and (C); and (2) for case (B), a first-best "winner" standard (sW=s*(1)), no 

change in the "loser" standard (sL=s*(0)>s*(1)), a low emission tax (te<te(s*(0))< 

max(t0,t1)), a positive output tax (tq=tq(te)>0), and a combined per-unit-output tax (for 

the winner) that is less than the marginal pollution damage (tq+tes*(1)< D'(E*(1))s*(1)).   

 ii. Section VI.  All in Section VI extends directly, with one change: The optimal 

Section V policy must allow for output taxes (as described in Proposition 2" above).  

Specifically, our Section V policy of taxes and standards now stipulates the emission tax 

te, output tax tq, "winner" standard sW, and "loser" standard sL that satisfy:  (i) efficient 

"winner" emissions, sW=s*(δWr), (ii) efficient pricing (with sL>sW, te<tδWr, and tq≥0) 

(C3)    c(sL,δLr) + tesL + tq = CδWr
*    , 

and (iii) a "winner" payoff exactly equal to the societal gains from the excess innovation, 

δWr-δLr: 
(C4) Winner Payoff = Q*(δWr) {CδWr

*  -c(s*(δWr),δWr)-tes*(δWr)-tq} = W*(δWr)-

W*(δLr) 

For notational convenience, we will denote these (generalized) Section V policies by 

{Z(δWr,δLr)}≡{sW=s*(δWr),sL(δWr,δLr),te(δWr,δLr),tq(δWr,δLr)}.  (As above, we will 

uniquely identify these policies with the restriction that sL≤s*(0) and appealing to 
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positive output taxes only when they are needed to equate the rents of successful 

innovators with the societal gains from the innovation.)  With this revised {Z()}, we 

have: 

 Proposition 3'.  Given the optimal environmental policies, {Z(δWr,δLr)}, and the 

technology verification requirement described in the paper, there is a subgame perfect 

equilibrium in which firms truthfully reveal their technologies to the government and, 

hence, first-best outcomes are attained. 

 iii. Proofs of Results Without Assumption 1.   

 Proof of Proposition 1 in the paper (No Assumption 1).  Define 

(C5)  X1 ≡ (C*
0 -C*

1 )Q*(1)   ,   X2 ≡ (C*
0 -[c(s*(1),0)+t1s*(1)]) Q*(1),  

   X3 ≡ ⌡⌠
Q(C*

0)

Q(C*
1)
 (P(Q)-C*

0) dQ < 0   ,    

   X4 ≡ {[D'(E*(1))E*(1)-D(E*(1))]-[D'(E*(0))E*(0)-D(E*(0))]}, 

where X3<0 is due to C*
0 >C*

1 (and hence, P(Q)<C*
0 for Q (Q(C*

0),Q(C*
1))) .  Noting that 

W*(δ) can be written as 

  W*(δ) = ⌡⌠
0

Q(C*
δ)
  P(z)dz - C*

δ Q(C*
δ ) + {D'(E*(δ))E*(δ)-D(E*(δ))}, 

we can expand W*(1)-W*(0) as follows: 

(C6)    W*(1)-W*(0) = X1+X3+X4  

Similarly, expanding πB(s*(1)) in (22), 

    πB(s*(1)) = X1-X2 

With X3<0, and X4≤(t1-t0)E*(1), the following is a sufficient condition for 

overinvestment to occur: 

(C7)  X2+(t1-t0)E*(1) < 0 ⇒ X2+X3+X4 < 0 ⇒ πB(s*(1)) > W*(1)-W*(0) 

Expanding the left-hand-side of (C7) (substituting for C*
0 =c(s*(0),0)+t0s*(0)), 

(C8)  X2+(t1-t0)E*(1) = Q*(1){[c(s*(0),0)-c(s*(1),0)]+t0[s*(0)-s*(1)]}  
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     = Q*(1) ⌡⌠
s*(1)

s*(0)
  {cs(s,0)+t0}ds < 0, 

where the inequality follows from cs(s*(0),0)+t0=0 (by the definition of 

s*(0)=s(t0,0)=argmin c(s,0)+t0s), css>0, and s*(0)>s*(1).  QED. 

 Note:  Proofs of Observation 1, Observation 2, and Corollary 1 do not rely upon 

Assumption 1. 

 Proof of Proposition 2".  At te0 ≡te(s*(0)) (as defined in eq. (21)), we have (by 

construction and assumption) tq(te0 )=0 and (with πΒ
so(te)  as defined in (C2) above and 

πΒ(sL) as defined in eq. (22)) 

   πΒ
so(te0)  = πΒ(s*(0)) > W*(1)-W*(0). 

Furthermore, at te1 ≡-[c(s*(0),0)-c(s*(1),1)]/[s*(0)-s*(1)] < teo , we have 

              πΒ
so(te1)  = 0 < W*(1)-W*(0). 

Therefore, by the Intermediate Value Theorem, there is a te* ∈(te1 ,te0 ) such that  

(C9)    πΒ
so(te*)  = W*(1)-W*(0). 

By (C9) and eq. (C1), the following policy yields a first-best: te=te* , tq=tq(te* ), sL=s*(0), 

and sW=s*(1).  With te* <te0  and dtq(te)/dte<0 (by eq. (C1)), we have tq(te* )>0.  Finally, by 

eq. (C9), the definition of πΒ
so(te)  in (C2), and W*(1)-W*(0)>0, we have 

(C10)  πΒ
so(te*)  > 0 ⇒ c(s*(0),0)+te* s*(0) > c(s*(1),1)+te* s*(1). 

Furthermore, eq. (C10) and eq. (C1) imply 

 tq(te* ) = C*
1  - [c(s*(0),0)+te* s*(0)] < C*

1  - [c(s*(1),1)+te* s*(1)] = t1s*(1)-te* s*(1), 

which gives us the final inequality in Proposition 2" (tq+tes*(1)<t1s*(1)).  QED. 

 8


