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A. Proofs of Section V Results

First note that, for simplicity, we ensure interior emission choices by assuming

that, for 5 {0,1},

cs(0,0) | is arbitrarily large and | cs(s,0) | ~0 for all s above a given
(positive) 5. The bound 5 represents a "zero abatement" level of per-unit emissions and
is thus assumed to satisfy: c(5,1)=c(s ,0). Second, we establish a sequence of
preliminary results.

Result 1. (a) te(s*(1))<t1, and (b) te(s*(0)<to.

Proof. (a) Follows from eq. (14). (b) From (21),

te(s*(0)) = [C] -c(s*(0),0))/s*(0) = {[C] -C{ V/s*(0)} +to < to,
where the inequality is due to C] <Cj .

Result 1. s*(1)<s(te(s*(1)),0), where
(A1) s(t,0) = argmin c(s,0)+ts

Proof. Follows from Result I(a), s§()<0, s¢()<0, and s*(1)=s(ty,1).

Result 1. cg(s*(1),0)+te(s*(1))<0.

Proof. Follows from Result II, the definition of s(t,0) in (A1) (where
cs(s(),0)+t=0), and cgg>0.

Result IV. cg(s ,0)+te(s )>0.

Proof. With cg4(s,0)=0, c(s*(1),1)>c(s ,1)=c(5 ,0), and t;s*(1)>0, we have (using
21))

Cs(5,0)+te(5 ) = te(s ) = {c(s*(1),1)+t1s*(1)-c(s ,0)}/s > 0.
Result V. There is a unique s{ e(s*(1),5 ) such that (a) cs(s{ ,0)+te(sy )=0, (b)

Cs(sL,0)*te(s1.)<0 for all sL<sE , and (¢) cg(s,0)+te(sp)>0 for all SLZSE .



Proof. By Results III and IV, and the Intermediate Value Theorem, there exists
an si e(s*(1),s ):cs(si ,O)+te(sﬁ )=0. We can thus define sg = min sg: sp>s*(1) and
cs(sL,0)+te(s.)=0. By construction, this sg satisfies properties (a) and (b). Now suppose
that sg did not satisfy property (c), so that there is an sf >sg :cs(sf ,O)+te(sl% )<0. By
differentiability of (cg(s1,0)+te(sL)), there must then exist an SE € [sg ,SI% ): cS(sﬁ
0)+te(s? )=0 and cgs(s; ,0)+[Ote(si )/As1]<0. However, with cgs()>0 and (from (21)),
(A2) {es(SLOYHe(sL)} = - dte(sL)/dst,
css()+[Ote()/0sL >0 whenever cg()+te()=0, thus contradicting our premise that property (c)
did not hold. Together, properties (a)-(c) imply uniqueness of sg .

Result VI. s*(0)<s{ (with s defined in Result V) .

Proof. From the definitions of s*(0), to, and s(t,8) (in (A1))

(A3) s*(0)=s(t0,0) < s(te(s*(0)),0),

where the inequality follows from Result I(b) and s¢()<0. (A3) further implies (using the
definition of s(t,8) and cgs>0)

(A4) cs(s¥(0),0)*te(s*(0)) < 0.

Result VI now follows from (A4) and Result V.

Result VII. cg(s1.,0)+te(s1.)<O for all sy e[s*(1),s*(0)].

Proof. Follows from Results V and VI.

Result VIII. te(s*(0))<tj.

Proof. From eq. (21),

(AS) te(s*(0)) = [CT -c(5%(0),0)1/s*(0) < [c(s*(0),1)+t15*(0)-c(5*(0),0)1/s*(0)

=t1 + [c(s*(0),1)-c(s*(0),0)]/s*(0) <ty,
where the first inequality is due to the definition of C} =min c(s,1)+t;s, and the final
inequality is due to c§<O0.

Result IX. For sp €[s*(1),s*(0)], dte(sp)/dsp>0.

Proof. Follows from Result VII and (A2).

Proof of Observation 1. Follows from Results I(b), VIIL, and IX. QED.



Proof of Corollary 1. With te(sp )<to (Observation 1) and s¢()<0, we have:

s(te(sp),0) > s(to,0) = s*(0) > sp.. Similarly, with te(sp)<t; (Observation 1), we have:
s(te(sL),1) > s(t1,1) = s*(1) = sw. QED.

Proof of Observation 3. If
(A6) A =[W*(1)-W*(0)] - ng(s*(0)) > 0

then the observation follows from eq. (20) (where tg=ng(s*(1))) and the Intermediate

Value Theorem. Expanding mg(s*(0)) from (22), we have
(A7) mg(s*(0)) = (Cy -CTHQ*(D+ {t1s*(1)-tos*(0)+[C] -c(s*(0),0)][1-(s*(1)/sL)]}-
Substituting (A7) into (A6), using eq. (18), and recalling that ts=D'(E*(8)) and
E*(8)=s*(8)Q*(5), we have
(A8) A =X +tos*(0)(Q*(1)-Q*(0)) + [D(E*(0))-D(E*(1))]

- [CT -c(s*(0),0)][1-(s*(1)/sL)]Q*(1),
with (recalling Figure 1, where X corresponds with the negative of area c)

o
(A9) X= Q(f 1(i’(Q)-CE’}) dQ > (C7 -Cy )(Q*(1)-Q*(0)).

Q(CH)

Using (A9), and substituting te(s*(0)) from (A5),

(A10) A>[C] -c(s*(0),0)][Q*(1)(s*(1)/s*(0))-Q*(0)] + [D(E*(0))-D(E*(1))]
E*(0)
= [D(E*(0))-te(5*(0))E*(0)] - [D(E*(1))-te(s*(0)E*()] = [ [D'(E)-
E*(1)
te(s*(0))]dE

Eq. (A10), Result VIII, and E*(1)<E*(0) (Assumption 1) now imply
E*(0)

(A11) A> [ [D'(E)-t1]dE>0,
EX(1)

where the last inequality is due to the definition of t; (=D'(E*(1))), D"()>0, and

E*(0)>E*(1) (Assumption 1). (A11) establishes the desired inequality, (A6). QED.



B. Section VI: Proof that Firm 1 Will Truthfully Report

Under Optimal Government Policies

Firm 1's profit from a report of 61y, given a technology 61, are (with subsequent

truthful reporting by firm 2):
min(31r,81)
m*(81r;81) = Ep { [ ™(81r,02:51) f(82:12) dd2},

0
where EJ is firm 1's expectation operator over firm 2's R&D investment I2 and, per the

logic given in the paper, ©(811,02;01)=0 if 01r<62 or 61<62. For 61<91,

Olr
on*()/081r = EIp { n(81r,81r;0 DI 11512) + I [On(81r,62;61)/081r] 1(62;12) d62 } >0,

0
where the inequality is due to m(51r,02;01)>0 for 2=61r<061, and the analog for eq. (28)

(0n(01r,02;01)/001>0 for 62<81r<81). For 81r>01,

31
on*()/0d1r = E1p { f [0n(811,82;81)/0811] f(82;12) d82 }= 0 when 81y 231,

0
with the sign relation again due to the analog for eq. (28) (On(61r,02:01)/001r < 0 when

olr Z 01>02). Thus, the expected firm 1 profit n*() is maximized with a truthful report,

611':81.



C. Extension: Efficient Taxes and Standards Without Assumption 1

I. Section V. Proposition 1, Observations 1-3, and Corollary 1 give us the
following revised statement of Proposition 2:

Proposition 2'. If E*(1)<E*(0) (or mt5(s*(0))<W*(1)-W*(0)), then fully efficient
outcomes are produced by the following policy of emission taxes and per-unit-output
emission standards: (1) Pigovian emission taxes (with optional first-best emission
standards) in the symmetric technology cases (A) and (C); and (2) for the asymmetric
technology case (B), a first-best "winner" standard, a more lax environmental standard

for the "loser," and an emission tax that is less than its Pigovian counterpart: sw=s*(1),
sL=SL €(s*(1)5*(0), tete(sL )<t1.

When the prior conditions of Proposition 2' are violated, we impose a plausible
restriction on post-innovation emission standards in our asymmetric technology case (B):
Because it is implausible for innovation to spur a relaxation in environmental
performance standards, we restrict the case (B) emission standards to be no more lax than
would prevail without innovation, max(sw,sr )<s*(0).

In view of Proposition 2', the remaining possibility is that emissions rise with
innovation (E*(1)>E*(0)) and, in addition, the most lax loser standard possible
(sL=s*(0)) still provides firms with an incentive to overinvest in R&D (n(s*(0))>W*(1)-
W*(0)). For this circumstance, the following policy can optimally counter the persistent
overinvestment problem: (1) set the environmental standards to maximally differentiate
between the winning and losing firms, sw=s*(1) and s =s*(0); (2) lower the emission tax
te below its ex-post efficient level, te<t<(s*(0)); and (3) compensate for the lower
emission tax by levying a positive output tax, tq>0, that preserves efficient pricing,

(C1) tq=tq(te) tq: c(s*(0),0)+tes*(0)+tq = CJ .
Because the losing firm emits more pollutants per-unit-output than does the winning firm
(s*(0)>s*(1)), the reduced emission tax lowers the losing firm's per-unit-output costs

more than it does for the winner. The winner's reduced cost advantage in turn lowers its



profits and the associated incentive to invest in R&D. By lowering the emission tax

sufficiently far (and raising the output tax in tandem), the overinvestment problem can be

cured. Formally, this policy gives rise to winner profits of

(C2) mis(te) = {[c(s*(0),0)+tes*(0)+tq(te)] - [c(s*(1), D) Htes*(1)+q(te)] Q*(1)
= {c(5%(0),0)-c(s*(1),1) + te(s*(0)-s*(1)); Q*(1),

where the second equality is obtained by substituting for tq() from eq. (C1), and

differentiating reveals that the winner's profits decline with a reduced emission tax,
on§§(te) /0te=(s*(0)-s*(1))Q*(1)>0.

Proposition 2". If E*(1)>E*(0) and 75(s*(0))>W*(1)-W*(0), then fully efficient
outcomes can be prompted by a policy of the following form: (1) Pigovian emission taxes
in cases (A) and (C); and (2) for case (B), a first-best "winner" standard (swy=s*(1)), no
change in the "loser" standard (sp=s*(0)>s*(1)), a low emission tax (te<te(s*(0))<
max(to,t1)), a positive output tax (tg=tq(te)>0), and a combined per-unit-output tax (for
the winner) that is less than the marginal pollution damage (tqttes*(1)< D'(E*(1))s*(1)).

ii. Section VI. All in Section VI extends directly, with one change: The optimal
Section V policy must allow for output taxes (as described in Proposition 2" above).
Specifically, our Section V policy of taxes and standards now stipulates the emission tax
te, output tax tq, "winner" standard sw, and "loser" standard st that satisfy: (i) efficient
"winner" emissions, sw=s*(0wr), (i1) efficient pricing (with sp>sw, te<ts, , and t4=0)

(C3) ¢(SL,OLr) * tesL + tq = CSW 5

and (ii1) a "winner" payoff exactly equal to the societal gains from the excess innovation,
Owr-OLr:

(C4) Winner Payoff = Q*(5wr) {C5:Vr -C(s*(Owr),0Wr)-tes™(Swr)-tq} = W*(Owr)-
W(ELr)

For notational convenience, we will denote these (generalized) Section V policies by
{Z(dwr,0Lr) } ={sw=s*(OWr),SL(OWr,0L 1), te(dWr,0Lr),tq(Owr,OLr) } . (As above, we will

uniquely identify these policies with the restriction that s; <s*(0) and appealing to



positive output taxes only when they are needed to equate the rents of successful
innovators with the societal gains from the innovation.) With this revised {Z()}, we
have:

Proposition 3'. Given the optimal environmental policies, {Z(0wr,0Lr)}, and the
technology verification requirement described in the paper, there is a subgame perfect
equilibrium in which firms truthfully reveal their technologies to the government and,
hence, first-best outcomes are attained.

iii. Proofs of Results Without Assumption 1.

Proof of Proposition 1 in the paper (No Assumption 1). Define

(C5) X1=(Co-CHQ*(1) , X, = (Cg -[e(s*(1),0)+t1s*(1)]) Q*(1),
Q(C)
X3= [ (P(Q-CpdQ<0 ,
Q(CY)

X4 = {[D'(E*(1))E*(1)-D(E*(1))]-[D'(E*(0))E*(0)-D(E*(0))]},
where X3<0 is due to C; >C7 (and hence, P(Q)<Cj, for QLI(Q(C;),Q(C}))) . Noting that

W*(J) can be written as
Q(C3)
WH@)= [ P(2)dz- C5Q(Cj) + {D'(E*(8))E*(8)-D(E*(3))},
0

we can expand W*(1)-W*(0) as follows:
(Co) W*(1)-W*(0) = X1+X3+X4
Similarly, expanding ng(s*(1)) in (22),
ng(s*(1)) = X1-X,
With X3<0, and X4<(t;-tg)E*(1), the following is a sufficient condition for

overinvestment to occur:

(C7 X5+ (t1-tp)E*(1) < 0 = X, +X3+X4 <0 = mp(s*(1)) > W*(1)-W*(0)
Expanding the left-hand-side of (C7) (substituting for CE’; =c(s*(0),0)+tos*(0)),

(C8) Xy H(t1-to)E*(1) = Q*(1){[c(s¥(0),0)-c(s*(1),0)]+to[s*(0)-s*(1)]}



s*(0)
=Q*(1) [ {cs(s,0)+to}ds <0,
s*(1)

where the inequality follows from cg(s*(0),0)+tp=0 (by the definition of
s*(0)=s(tg,0)=argmin c(s,0)+tgps), css>0, and s*(0)>s*(1). QED.

Note: Proofs of Observation 1, Observation 2, and Corollary 1 do not rely upon

Assumption 1.
Proof of Proposition 2". At t =t¢(s*(0)) (as defined in eq. (21)), we have (by

construction and assumption) tq(tg )=0 and (with n¢(te) as defined in (C2) above and
Tg(sL) as defined in eq. (22))

TS = mp(s%(0) > WH(1)-W(0).
Furthermore, at té =-[c(s*(0),0)-c(s*(1),1)]/[s*(0)-s*(1)] < t2, we have

T(te) =0 < WH(1)-W*(0).

Therefore, by the Intermediate Value Theorem, there is a tz e(té ,tg ) such that
(C9) Tg(te) = WH(1)-W*(0).
By (C9) and eq. (C1), the following policy yields a first-best: teztz , tqth(t: ), sL=s*(0),

and sw=s*(1). With te <t} and dte(te)/dte<0 (by eq. (C1)), we have to(te )>0. Finally, by
eq. (C9), the definition of n{g(te) in (C2), and W*(1)-W*(0)>0, we have

(C10) m0(te) > 0 => c(s*(0),0)+te 5%(0) > c(s*(1),1)+te s*(1).

Furthermore, eq. (C10) and eq. (C1) imply
tqlte ) = C} - [c(5*(0),0)+te s*¥(0)] < C} - [c(s*(1),1)+te s*(1)] = tys*(1)-te s*(1),

which gives us the final inequality in Proposition 2" (tq+tes*(1)<tys*(1)). QED.



