Supplemental Materials for Robert Innes and Joseph Bial, "Inducing Innovation in the Environmental Technology of Oligopolistic Firms," Journal of Industrial Economics VOLUME 50 (ISSUE 3), September 2002, pp. 265-288.

A. Proofs of Section V Results

First note that, for simplicity, we ensure interior emission choices by assuming that, for $\delta \in \{0,1\}$, $|c_s(0,\delta)|$ is arbitrarily large and $|c_s(s,\delta)| \approx 0$ for all s above a given (positive) \overline{v} . The bound \overline{v} represents a "zero abatement" level of per-unit emissions and is thus assumed to satisfy: $c(\overline{v}, 1) \approx c(\overline{v}, 0)$. Second, we establish a sequence of preliminary results.

<u>*Result I*</u>. (a) $t_e(s^*(1)) \le t_1$, and (b) $t_e(s^*(0) \le t_0$.

Proof. (a) Follows from eq. (14). (b) From (21), $t_{e}(s^{*}(0)) = [C_{1}^{*} - c(s^{*}(0), 0)]/s^{*}(0) = \{[C_{1}^{*} - C_{0}^{*}]/s^{*}(0)\} + t_{0} < t_{0},$

where the inequality is due to $C_1^* < C_0^*$.

<u>*Result II*</u>. $s^{*}(1) \le s(t_{e}(s^{*}(1)), 0)$, where

(A1) $s(t,\delta) \equiv \operatorname{argmin} c(s,\delta) + ts$

Proof. Follows from Result I(a), $s_{\delta}() < 0$, $s_t() < 0$, and $s^*(1) = s(t_1, 1)$.

<u>*Result III*</u>. $c_s(s^*(1),0)+t_e(s^*(1)) < 0$.

Proof. Follows from Result II, the definition of $s(t,\delta)$ in (A1) (where $c_s(s(),\delta)+t=0$), and $c_{ss}>0$.

Result IV. $c_s(\overline{s}, 0)+t_e(\overline{s})>0$.

Proof. With $c_s(\overline{s}, 0) \approx 0$, $c(s^*(1), 1) > c(\overline{s}, 1) \approx c(\overline{s}, 0)$, and $t_1s^*(1) > 0$, we have (using

(21))

$$\begin{split} c_{s}(\overline{s}\;,0)+t_{e}(\overline{s}\;)&\approx t_{e}(\overline{s}\;)=\{c(s^{*}(1),1)+t_{1}s^{*}(1)-c(\overline{s}\;,0)\}/\overline{s}\;>0.\\ \underline{\textit{Result V}}. \ \ \text{There is a unique }s^{0}_{L}\in(s^{*}(1),\overline{s}\;) \text{ such that (a) }c_{s}(s^{0}_{L}\;,0)+t_{e}(s^{0}_{L}\;)=0, \ (b)\\ c_{s}(s_{L},0)+t_{e}(s_{L})<0 \ \text{for all }s_{L}$$

Proof. By Results III and IV, and the Intermediate Value Theorem, there exists an $s_L^1 \in (s^*(1), \overline{s}): c_s(s_L^1, 0) + t_e(s_L^1) = 0$. We can thus define $s_L^0 = \min s_L: s_L > s^*(1)$ and $c_s(s_L, 0) + t_e(s_L) = 0$. By construction, this s_L^0 satisfies properties (a) and (b). Now suppose that s_L^0 did not satisfy property (c), so that there is an $s_L^2 > s_L^0: c_s(s_L^2, 0) + t_e(s_L^2) < 0$. By differentiability of $(c_s(s_L, 0) + t_e(s_L))$, there must then exist an $s_L^3 \in [s_L^0, s_L^2]: c_s(s_L^3, 0) + t_e(s_L^3, 0) + t_e(s_L) > 0$. However, with $c_{ss}(0) > 0$ and (from (21)), (A2) $\{c_s(s_L, 0) + t_e(s_L)\} \stackrel{s}{=} - dt_e(s_L)/ds_L$,

 $c_{ss}()+[\partial t_e()/\partial s_L]>0$ whenever $c_s()+t_e()=0$, thus contradicting our premise that property (c) did not hold. Together, properties (a)-(c) imply uniqueness of s_L^0 .

<u>Result VI</u>. $s^*(0) \le s_L^0$ (with s_L^0 defined in Result V).

Proof. From the definitions of $s^{*}(0)$, t_0 , and $s(t,\delta)$ (in (A1))

(A3)
$$s^{*}(0)=s(t_{0},0) < s(t_{e}(s^{*}(0)),0)$$

where the inequality follows from Result I(b) and s_t ()<0. (A3) further implies (using the definition of $s(t,\delta)$ and $c_{ss}>0$)

(A4)
$$c_s(s^*(0),0)+t_e(s^*(0)) < 0.$$

Result VI now follows from (A4) and Result V.

<u>*Result VII*</u>. $c_s(s_L,0)+t_e(s_L) \le 0$ for all $s_L \in [s^*(1),s^*(0)]$.

Proof. Follows from Results V and VI.

<u>Result VIII</u>. $t_e(s^*(0)) \le t_1$.

Proof. From eq. (21),

(A5)
$$t_{e}(s^{*}(0)) = [C_{1}^{*} - c(s^{*}(0), 0)]/s^{*}(0) < [c(s^{*}(0), 1) + t_{1}s^{*}(0) - c(s^{*}(0), 0)]/s^{*}(0) < t_{1},$$
$$= t_{1} + [c(s^{*}(0), 1) - c(s^{*}(0), 0)]/s^{*}(0) < t_{1},$$

where the first inequality is due to the definition of $C_1^* = \min c(s,1)+t_1s$, and the final inequality is due to $c_{\delta} < 0$.

<u>Result IX</u>. For $s_L \in [s^*(1), s^*(0)]$, $dt_e(s_L)/ds_L > 0$. *Proof.* Follows from Result VII and (A2). <u>Proof of Observation 1</u>. Follows from Results I(b), VIII, and IX. *QED*. <u>Proof of Corollary 1</u>. With $t_e(s_L) \le t_0$ (Observation 1) and $s_t() \le 0$, we have: $s(t_e(s_L),0) \ge s(t_0,0) = s^*(0) \ge s_L$. Similarly, with $t_e(s_L) \le t_1$ (Observation 1), we have: $s(t_e(s_L),1) \ge s(t_1,1) = s^*(1) = s_W$. *QED*.

(A6)
$$\frac{Proof \ of \ Observation \ 3}{\Delta \equiv [W^*(1)-W^*(0)]} - \pi_{B}(s^*(0)) > 0$$

then the observation follows from eq. (20) (where $\pi_B \equiv \pi_B(s^*(1))$) and the Intermediate Value Theorem. Expanding $\pi_B(s^*(0))$ from (22), we have

(A7)
$$\pi_{B}(s^{*}(0)) = (C_{0}^{*} - C_{1}^{*})Q^{*}(1) + \{t_{1}s^{*}(1) - t_{0}s^{*}(0) + [C_{1}^{*} - c(s^{*}(0), 0)][1 - (s^{*}(1)/s_{L})]\}.$$

Substituting (A7) into (A6), using eq. (18), and recalling that $t_{\delta}=D'(E^*(\delta))$ and

 $E^{*}(\delta) = s^{*}(\delta)Q^{*}(\delta)$, we have

(A8)
$$\Delta = X + t_0 s^*(0) (Q^*(1) - Q^*(0)) + [D(E^*(0)) - D(E^*(1))]$$
$$- [C_1^* - c(s^*(0), 0)][1 - (s^*(1)/s_L)]Q^*(1),$$

with (recalling Figure 1, where X corresponds with the negative of area c) $Q(C_1^*)$

(A9)
$$X \equiv \int (P(Q) - C_0^*) \, dQ > (C_1^* - C_0^*) (Q^*(1) - Q^*(0)).$$
$$Q(C_0^*)$$

Using (A9), and substituting $t_e(s^*(0))$ from (A5),

(A10)
$$\Delta > [C_1^* - c(s^*(0), 0)][Q^*(1)(s^*(1)/s^*(0)) - Q^*(0)] + [D(E^*(0)) - D(E^*(1))]$$

= $[D(E^*(0)) - t_e(s^*(0))E^*(0)] - [D(E^*(1)) - t_e(s^*(0))E^*(1)] = \int_{E^*(1)}^{E^*(0)} [D'(E) - E^*(1)] = \int_{E^*(1)}^{E^*(0)} [D'(E) - E^*(E)] = \int_{E^*(1)}^{E^*(1)} [D'(E) - E^*(E)] = \int_{E^*(1)$

 $t_{e}(s^{*}(0))]dE$

Eq. (A10), Result VIII, and
$$E^{*}(1) \leq E^{*}(0)$$
 (Assumption 1) now imply
(A11) $\Delta \geq \int_{E^{*}(0)} [D'(E)-t_{1}]dE \geq 0,$
 $E^{*}(1)$

where the last inequality is due to the definition of t_1 (=D'(E*(1))), D"() ≥ 0 , and E*(0) \geq E*(1) (Assumption 1). (A11) establishes the desired inequality, (A6). *QED*.

B. Section VI: Proof that Firm 1 Will Truthfully Report

Under Optimal Government Policies

Firm 1's profit from a report of δ_{1r} , given a technology δ_1 , are (with subsequent truthful reporting by firm 2):

$$\pi^*(\delta_{1r};\delta_1) \equiv \mathrm{E}_{I_2} \left\{ \int_{0}^{\min(\delta_{1r},\delta_1)} \pi(\delta_{1r},\delta_2;\delta_1) f(\delta_2;I_2) d\delta_2 \right\},$$

where EI₂ is firm 1's expectation operator over firm 2's R&D investment I₂ and, per the logic given in the paper, $\pi(\delta_{1r}, \delta_2; \delta_1)=0$ if $\delta_{1r}<\delta_2$ or $\delta_1\leq\delta_2$. For $\delta_{1r}<\delta_1$,

$$\partial \pi^*()/\partial \delta_{1r} = \mathrm{E}_{I_2} \left\{ \pi(\delta_{1r}, \delta_{1r}; \delta_1) f(\delta_{1r}; I_2) + \int_0^{\delta_{1r}} \left[\partial \pi(\delta_{1r}, \delta_2; \delta_1) / \partial \delta_{1r} \right] f(\delta_2; I_2) \, \mathrm{d}\delta_2 \right\} > 0$$

where the inequality is due to $\pi(\delta_{1r}, \delta_2; \delta_1) > 0$ for $\delta_2 = \delta_{1r} < \delta_1$, and the analog for eq. (28) $(\partial \pi(\delta_{1r}, \delta_2; \delta_1) / \partial \delta_{1r} > 0$ for $\delta_2 \le \delta_{1r} < \delta_1$. For $\delta_{1r} \ge \delta_1$, $\partial \pi^*() / \partial \delta_{1r} = E_{I_2} \begin{cases} \delta_1 \\ \int [\partial \pi(\delta_{1r}, \delta_2; \delta_1) / \partial \delta_{1r}] f(\delta_2; I_2) d\delta_2 \end{cases} \leq 0$ when $\delta_{1r} \ge \delta_1$,

with the sign relation again due to the analog for eq. (28) $(\partial \pi(\delta_{1r}, \delta_2; \delta_1) / \partial \delta_{1r} \stackrel{<}{=} 0$ when $\delta_{1r} \stackrel{>}{=} \delta_1 > \delta_2$). Thus, the expected firm 1 profit $\pi^*()$ is maximized with a truthful report, $\delta_{1r} = \delta_1$.

C. Extension: Efficient Taxes and Standards Without Assumption 1

i. Section V. Proposition 1, Observations 1-3, and Corollary 1 give us the following revised statement of Proposition 2:

<u>Proposition 2'</u>. If E*(1)<E*(0) (or $\pi_B(s^*(0))$ <W*(1)-W*(0)), then fully efficient outcomes are produced by the following policy of emission taxes and per-unit-output emission standards: (1) Pigovian emission taxes (with optional first-best emission standards) in the symmetric technology cases (A) and (C); and (2) for the asymmetric technology case (B), a first-best "winner" standard, a more lax environmental standard for the "loser," and an emission tax that is less than its Pigovian counterpart: $s_W=s^*(1)$, $s_L=s_L^* \in (s^*(1),s^*(0)), t_e=t_e(s_L^*) < t_1$.

When the prior conditions of Proposition 2' are violated, we impose a plausible restriction on post-innovation emission standards in our asymmetric technology case (B): Because it is implausible for innovation to spur a relaxation in environmental performance standards, we restrict the case (B) emission standards to be no more lax than would prevail without innovation, $max(s_W,s_L) \leq s^*(0)$.

In view of Proposition 2', the remaining possibility is that emissions rise with innovation (E*(1)>E*(0)) and, in addition, the most lax loser standard possible ($s_L=s^*(0)$) still provides firms with an incentive to overinvest in R&D ($\pi_B(s^*(0))$ >W*(1)-W*(0)). For this circumstance, the following policy can optimally counter the persistent overinvestment problem: (1) set the environmental standards to maximally differentiate between the winning and losing firms, $s_W=s^*(1)$ and $s_L=s^*(0)$; (2) lower the emission tax t_e below its ex-post efficient level, $t_e < t_e(s^*(0))$; and (3) compensate for the lower emission tax by levying a positive output tax, $t_q>0$, that preserves efficient pricing, (C1) $t_q=t_q(t_e) t_q$: $c(s^*(0),0)+t_es^*(0)+t_q = C_1^*$.

Because the losing firm emits more pollutants per-unit-output than does the winning firm $(s^{*}(0)>s^{*}(1))$, the reduced emission tax lowers the losing firm's per-unit-output costs more than it does for the winner. The winner's reduced cost advantage in turn lowers its

5

profits and the associated incentive to invest in R&D. By lowering the emission tax sufficiently far (and raising the output tax in tandem), the overinvestment problem can be cured. Formally, this policy gives rise to winner profits of

(C2)
$$\pi_{B}^{so}(t_{e}) = \{ [c(s^{*}(0), 0) + t_{e}s^{*}(0) + t_{q}(t_{e})] - [c(s^{*}(1), 1) + t_{e}s^{*}(1) + t_{q}(t_{e})] Q^{*}(1) \}$$
$$= \{ c(s^{*}(0), 0) - c(s^{*}(1), 1) + t_{e}(s^{*}(0) - s^{*}(1)) \} Q^{*}(1),$$

where the second equality is obtained by substituting for t_q () from eq. (C1), and differentiating reveals that the winner's profits decline with a reduced emission tax, $\partial \pi_{\mathbf{R}}^{\mathbf{SO}}(\mathbf{t}_{\mathbf{e}}) / \partial \mathbf{t}_{\mathbf{e}} = (\mathbf{s}^*(0) - \mathbf{s}^*(1))\mathbf{Q}^*(1) > 0.$

<u>Proposition 2"</u>. If E*(1)>E*(0) and $\pi_B(s^*(0))>W^*(1)-W^*(0)$, then fully efficient outcomes can be prompted by a policy of the following form: (1) Pigovian emission taxes in cases (A) and (C); and (2) for case (B), a first-best "winner" standard (s_W=s*(1)), no change in the "loser" standard (s_L=s*(0)>s*(1)), a low emission tax (t_e<t_e(s*(0))< max(t₀,t₁)), a positive output tax (t_q=t_q(t_e)>0), and a combined per-unit-output tax (for the winner) that is less than the marginal pollution damage (t_q+t_es*(1)< D'(E*(1))s*(1)).

<u>*ii. Section VI*</u>. All in Section VI extends directly, with one change: The optimal Section V policy must allow for output taxes (as described in Proposition 2" above). Specifically, our Section V policy of taxes and standards now stipulates the emission tax t_e, output tax t_q, "winner" standard s_W, and "loser" standard s_L that satisfy: (i) efficient "winner" emissions, s_W=s*(δ_{Wr}), (ii) efficient pricing (with s_L>s_W, t_e<t_{δ_{Wr}}, and t_q≥0) (C3) $c(s_L,\delta_{Lr}) + t_es_L + t_q = C_{\delta_{Wr}}^*$,

and (iii) a "winner" payoff exactly equal to the societal gains from the excess innovation, δ_{Wr} - δ_{Lr} :

(C4) Winner Payoff = Q*(
$$\delta_{Wr}$$
) {C $_{\delta_{Wr}}^*$ -c(s*(δ_{Wr}), δ_{Wr})-t_es*(δ_{Wr})-t_q} = W*(δ_{Wr})-W*(δ_{Lr})

For notational convenience, we will denote these (generalized) Section V policies by $\{Z(\delta_{Wr}, \delta_{Lr})\} \equiv \{s_W = s^*(\delta_{Wr}), s_L(\delta_{Wr}, \delta_{Lr}), t_e(\delta_{Wr}, \delta_{Lr}), t_q(\delta_{Wr}, \delta_{Lr})\}$. (As above, we will uniquely identify these policies with the restriction that $s_L \leq s^*(0)$ and appealing to

positive output taxes only when they are needed to equate the rents of successful innovators with the societal gains from the innovation.) With this revised $\{Z()\}$, we have:

<u>Proposition 3'</u>. Given the optimal environmental policies, $\{Z(\delta_{Wr}, \delta_{Lr})\}$, and the technology verification requirement described in the paper, there is a subgame perfect equilibrium in which firms truthfully reveal their technologies to the government and, hence, first-best outcomes are attained.

iii. Proofs of Results Without Assumption 1.

$$\frac{Proof \ of \ Proposition \ 1 \ in \ the \ paper \ (No \ Assumption \ 1)}{X_1 \equiv (C_0^* - C_1^*)Q^*(1)}, \quad X_2 \equiv (C_0^* - [c(s^*(1), 0) + t_1s^*(1)])Q^*(1), \\ Q(C_1^*) \\ X_3 \equiv \int (P(Q) - C_0^*) \ dQ < 0 , \\ Q(C_0^*) \\ X_4 \equiv \{ [D'(E^*(1))E^*(1) - D(E^*(1))] - [D'(E^*(0))E^*(0) - D(E^*(0))] \},$$

where $X_3 < 0$ is due to $C_0^* > C_1^*$ (and hence, $P(Q) < C_0^*$ for $Q \Box (Q(C_0^*), Q(C_1^*)))$. Noting that

 $W^*(\delta)$ can be written as

$$W^{*}(\delta) = \int_{0}^{Q(C_{\delta}^{*})} P(z)dz - C_{\delta}^{*}Q(C_{\delta}^{*}) + \{D'(E^{*}(\delta))E^{*}(\delta)-D(E^{*}(\delta))\},\$$

we can expand $W^{*}(1)$ - $W^{*}(0)$ as follows:

(C6)
$$W^{*}(1)-W^{*}(0) = X_{1}+X_{3}+X_{4}$$

Similarly, expanding $\pi_{B}(s^{*}(1))$ in (22),

$$\pi_{\rm B}(s^*(1)) = X_1 - X_2$$

With $X_3 < 0$, and $X_4 \le (t_1 - t_0) E^*(1)$, the following is a sufficient condition for

overinvestment to occur:

(C7)
$$X_2 + (t_1 - t_0)E^*(1) < 0 \Rightarrow X_2 + X_3 + X_4 < 0 \Rightarrow \pi_B(s^*(1)) > W^*(1) - W^*(0)$$

Expanding the left-hand-side of (C7) (substituting for $C_0^* = c(s^*(0), 0) + t_0 s^*(0))$,

(C8)
$$X_2+(t_1-t_0)E^*(1) = Q^*(1)\{[c(s^*(0),0)-c(s^*(1),0)]+t_0[s^*(0)-s^*(1)]\}$$

$$= Q^{*}(1) \int_{s^{*}(1)}^{s^{*}(0)} \{c_{s}(s,0)+t_{0}\} ds < 0,$$

where the inequality follows from $c_s(s^*(0),0)+t_0=0$ (by the definition of

$$s^{*}(0)=s(t_{0},0)=argmin c(s,0)+t_{0}s), c_{ss}>0, and s^{*}(0)>s^{*}(1). QED.$$

<u>Note: Proofs of Observation 1, Observation 2, and Corollary 1 do not rely upon</u> Assumption 1.

<u>Proof of Proposition 2"</u>. At $t_e^0 \equiv t_e(s^*(0))$ (as defined in eq. (21)), we have (by construction and assumption) $t_q(t_e^0)=0$ and (with $\pi_B^{so}(t_e)$ as defined in (C2) above and

 $\pi_{B}(s_{L})$ as defined in eq. (22))

$$\pi_{\mathrm{B}}^{\mathrm{so}}(t_{\mathrm{e}}^{0}) = \pi_{\mathrm{B}}(s^{*}(0)) > \mathrm{W}^{*}(1) \cdot \mathrm{W}^{*}(0).$$

Furthermore, at $t_e^1 \equiv -[c(s^*(0),0)-c(s^*(1),1)]/[s^*(0)-s^*(1)] < t_e^0$, we have $\pi_B^{so}(t_e^1) = 0 < W^*(1)-W^*(0).$

Therefore, by the Intermediate Value Theorem, there is a $t_e^* \in (t_e^1, t_e^0)$ such that (C9) $\pi_B^{so}(t_e^*) = W^*(1) \cdot W^*(0).$

By (C9) and eq. (C1), the following policy yields a first-best: $t_e=t_e^*$, $t_q=t_q(t_e^*)$, $s_L=s^*(0)$, and $s_W=s^*(1)$. With $t_e^* < t_e^0$ and $dt_q(t_e)/dt_e < 0$ (by eq. (C1)), we have $t_q(t_e^*) > 0$. Finally, by eq. (C9), the definition of $\pi_B^{so}(t_e)$ in (C2), and W*(1)-W*(0)>0, we have

(C10)
$$\pi_{B}^{so}(t_{e}^{*}) > 0 \Rightarrow c(s^{*}(0), 0) + t_{e}^{*} s^{*}(0) > c(s^{*}(1), 1) + t_{e}^{*} s^{*}(1).$$

Furthermore, eq. (C10) and eq. (C1) imply

$$t_{q}(t_{e}^{*}) = C_{1}^{*} - [c(s^{*}(0), 0) + t_{e}^{*} s^{*}(0)] < C_{1}^{*} - [c(s^{*}(1), 1) + t_{e}^{*} s^{*}(1)] = t_{1}s^{*}(1) - t_{e}^{*} s^{*}(1),$$

which gives us the final inequality in Proposition 2" ($t_q+t_es^*(1) \le t_1s^*(1)$). *QED*.