Supplemental Materials for Robert Innes and Joseph Bial, "Inducing Innovation in the Environmental Technology of Oligopolistic Firms," Journal of Industrial Economics VOLUME 50 (ISSUE 3), September 2002, pp. 265-288.

A. Proofs of Section V Results

First note that, for simplicity, we ensure interior emission choices by assuming that, for $\delta \in\{0,1\},\left|\mathrm{c}_{\mathrm{s}}(0, \delta)\right|$ is arbitrarily large and $\left|\mathrm{c}_{\mathrm{s}}(\mathrm{s}, \delta)\right| \approx 0$ for all s above a given (positive) s. The bound s represents a "zero abatement" level of per-unit emissions and is thus assumed to satisfy: $c(\mathrm{~s}, 1) \approx c(\mathrm{~s}, 0)$. Second, we establish a sequence of preliminary results.

Result I. (a) $\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}^{*}(1)\right)<\mathrm{t}_{1}$, and (b) $\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}^{*}(0)<\mathrm{t}_{0}\right.$.
Proof. (a) Follows from eq. (14). (b) From (21),

$$
\mathrm{t}_{\mathrm{e}}\left(\mathrm{~s}^{*}(0)\right)=\left[\mathrm{C}_{1}^{*}-\mathrm{c}\left(\mathrm{~s}^{*}(0), 0\right)\right] / \mathrm{s}^{*}(0)=\left\{\left[\mathrm{C}_{1}^{*}-\mathrm{C}_{0}^{*}\right] / \mathrm{s}^{*}(0)\right\}+\mathrm{t}_{0}<\mathrm{t}_{0}
$$

where the inequality is due to $\mathrm{C}_{1}^{*}<\mathrm{C}_{0}^{*}$.
Result II. $\mathrm{s}^{*}(1)<\mathrm{s}\left(\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}^{*}(1)\right), 0\right)$, where

$$
\begin{equation*}
\mathrm{s}(\mathrm{t}, \delta) \equiv \operatorname{argmin} \mathrm{c}(\mathrm{~s}, \delta)+\mathrm{ts} \tag{A1}
\end{equation*}
$$

Proof. Follows from Result $\mathrm{I}(\mathrm{a}), \mathrm{s}_{\delta}()<0, \mathrm{~s}_{\mathrm{t}}()<0$, and $\mathrm{s}^{*}(1)=\mathrm{s}\left(\mathrm{t}_{1}, 1\right)$.
Result III. $\mathrm{c}_{\mathrm{s}}\left(\mathrm{s}^{*}(1), 0\right)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}^{*}(1)\right)<0$.
Proof. Follows from Result II, the definition of $\mathrm{s}(\mathrm{t}, \delta)$ in (A1) (where $\left.\mathrm{c}_{\mathrm{s}}(\mathrm{s}(), \delta)+\mathrm{t}=0\right)$, and $\mathrm{c}_{\mathrm{ss}}>0$.

Result IV. $\mathrm{c}_{\mathrm{s}}(\overline{\mathrm{s}}, 0)+\mathrm{t}_{\mathrm{e}}(\overline{\mathrm{s}})>0$.
Proof. With $\mathrm{c}_{\mathrm{s}}(\overline{\mathrm{s}}, 0) \approx 0, \mathrm{c}\left(\mathrm{s}^{*}(1), 1\right)>\mathrm{c}(\overline{\mathrm{s}}, 1) \approx \mathrm{c}(\overline{\mathrm{s}}, 0)$, and $\mathrm{t}_{1} \mathrm{~s}^{*}(1)>0$, we have (using (21))

$$
\mathrm{c}_{\mathrm{s}}(\overline{\mathrm{~s}}, 0)+\mathrm{t}_{\mathrm{e}}(\overline{\mathrm{~s}}) \approx \mathrm{t}_{\mathrm{e}}(\overline{\mathrm{~s}})=\left\{\mathrm{c}\left(\mathrm{~s}^{*}(1), 1\right)+\mathrm{t}_{\mathrm{l}} \mathrm{~s}^{*}(1)-\mathrm{c}(\overline{\mathrm{~s}}, 0)\right\} / \overline{\mathrm{s}}>0 .
$$

Result V. There is a unique $\mathrm{s}_{\mathrm{L}}^{0} \in\left(\mathrm{~s}^{*}(1), \overline{\mathrm{s}}\right)$ such that (a) $\mathrm{c}_{\mathrm{s}}\left(\mathrm{s}_{\mathrm{L}}^{0}, 0\right)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}^{0}\right)=0$, (b) $\mathrm{c}_{\mathrm{S}}\left(\mathrm{s}_{\mathrm{L}}, 0\right)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}\right)<0$ for all $\mathrm{s}_{\mathrm{L}}<\mathrm{s}_{\mathrm{L}}^{0}$, and (c) $\mathrm{c}_{\mathrm{S}}\left(\mathrm{s}_{\mathrm{L}}, 0\right)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}\right) \geq 0$ for all $\mathrm{s}_{\mathrm{L}} \geq \mathrm{s}_{\mathrm{L}}^{0}$.

Proof. By Results III and IV, and the Intermediate Value Theorem, there exists an $\mathrm{s}_{\mathrm{L}}^{1} \in\left(\mathrm{~s}^{*}(1), \overline{\mathrm{s}}\right): \mathrm{c}_{\mathrm{s}}\left(\mathrm{s}_{\mathrm{L}}^{1}, 0\right)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}^{1}\right)=0$. We can thus define $\mathrm{s}_{\mathrm{L}}^{0}=\min \mathrm{s}_{\mathrm{L}}: \mathrm{s}_{\mathrm{L}}>\mathrm{s}^{*}(1)$ and $\mathrm{c}_{\mathrm{s}}\left(\mathrm{s}_{\mathrm{L}}, 0\right)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}\right)=0$. By construction, this $\mathrm{s}_{\mathrm{L}}^{0}$ satisfies properties (a) and (b). Now suppose that $\mathrm{s}_{\mathrm{L}}^{0}$ did not satisfy property (c), so that there is an $\mathrm{s}_{\mathrm{L}}^{2}>\mathrm{s}_{\mathrm{L}}^{0}: \mathrm{c}_{\mathrm{s}}\left(\mathrm{s}_{\mathrm{L}}^{2}, 0\right)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}^{2}\right)<0$. By differentiability of $\left(\mathrm{c}_{\mathrm{s}}\left(\mathrm{s}_{\mathrm{L}}, 0\right)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}\right)\right)$, there must then exist an $\mathrm{s}_{\mathrm{L}}^{3} \in\left[\mathrm{~s}_{\mathrm{L}}^{0}, \mathrm{~s}_{\mathrm{L}}^{2}\right): \mathrm{c}_{\mathrm{s}}\left(\mathrm{s}_{\mathrm{L}}^{3}\right.$ $, 0)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}^{3}\right)=0$ and $\mathrm{c}_{\mathrm{ss}}\left(\mathrm{s}_{\mathrm{L}}^{3}, 0\right)+\left[\partial \mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}^{3}\right) / \partial \mathrm{s}_{\mathrm{L}}\right]<0$. However, with $\mathrm{c}_{\mathrm{ss}}()>0$ and (from (21)),

$$
\begin{equation*}
\left\{\mathrm{c}_{\mathrm{s}}\left(\mathrm{~s}_{\mathrm{L}}, 0\right)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{~s}_{\mathrm{L}}\right)\right\} \stackrel{\mathrm{s}}{=}-\mathrm{dt}_{\mathrm{e}}\left(\mathrm{~s}_{\mathrm{L}}\right) / \mathrm{ds}_{\mathrm{L}} \tag{A2}
\end{equation*}
$$

$\mathrm{c}_{\mathrm{ss}}()+\left[\partial \mathrm{t}_{\mathrm{e}}() / \partial \mathrm{s}_{\mathrm{L}}\right]>0$ whenever $\mathrm{c}_{\mathrm{s}}()+\mathrm{t}_{\mathrm{e}}()=0$, thus contradicting our premise that property (c) did not hold. Together, properties (a)-(c) imply uniqueness of $\mathrm{s}_{\mathrm{L}}^{0}$.

Result VI. $\mathrm{s}^{*}(0)<\mathrm{s}_{\mathrm{L}}^{0}\left(\right.$ with $\mathrm{s}_{\mathrm{L}}^{0}$ defined in Result V$)$.
Proof. From the definitions of $\mathrm{s}^{*}(0), \mathrm{t}_{0}$, and $\mathrm{s}(\mathrm{t}, \delta)$ (in (A1))

$$
\begin{equation*}
\mathrm{s}^{*}(0)=\mathrm{s}\left(\mathrm{t}_{0}, 0\right)<\mathrm{s}\left(\mathrm{t}_{\mathrm{e}}\left(\mathrm{~s}^{*}(0)\right), 0\right), \tag{A3}
\end{equation*}
$$

where the inequality follows from Result $\mathrm{I}(\mathrm{b})$ and $\mathrm{s}_{\mathrm{t}}()<0$. (A3) further implies (using the definition of $\mathrm{s}(\mathrm{t}, \delta)$ and $\mathrm{c}_{\mathrm{ss}}>0$)

$$
\begin{equation*}
\mathrm{c}_{\mathrm{s}}\left(\mathrm{~s}^{*}(0), 0\right)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{~s}^{*}(0)\right)<0 \tag{A4}
\end{equation*}
$$

Result VI now follows from (A4) and Result V.
Result VII. $\mathrm{c}_{\mathrm{s}}\left(\mathrm{s}_{\mathrm{L}}, 0\right)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}\right)<0$ for all $\mathrm{s}_{\mathrm{L}} \in\left[\mathrm{s}^{*}(1), \mathrm{s}^{*}(0)\right]$.
Proof. Follows from Results V and VI.
Result VIII. $\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}^{*}(0)\right)<\mathrm{t}_{1}$.
Proof. From eq. (21),

$$
\begin{align*}
\mathrm{t}_{\mathrm{e}}\left(\mathrm{~s}^{*}(0)\right)=\left[\mathrm{C}_{1}^{*}-\mathrm{c}\left(\mathrm{~s}^{*}(0), 0\right)\right] / \mathrm{s}^{*}(0) & <\left[\mathrm{c}\left(\mathrm{~s}^{*}(0), 1\right)+\mathrm{t}_{1} \mathrm{~s}^{*}(0)-\mathrm{c}\left(\mathrm{~s}^{*}(0), 0\right)\right] / \mathrm{s}^{*}(0) \tag{A5}\\
= & \mathrm{t}_{1}+\left[\mathrm{c}\left(\mathrm{~s}^{*}(0), 1\right)-\mathrm{c}\left(\mathrm{~s}^{*}(0), 0\right)\right] / \mathrm{s}^{*}(0)<\mathrm{t}_{1},
\end{align*}
$$

where the first inequality is due to the definition of $\mathrm{C}_{1}^{*}=\min \mathrm{c}(\mathrm{s}, 1)+\mathrm{t}_{1} \mathrm{~s}$, and the final inequality is due to $\mathrm{c}_{\delta}<0$.

Result IX. For $\mathrm{s}_{\mathrm{L}} \in\left[\mathrm{s}^{*}(1), \mathrm{s}^{*}(0)\right], \mathrm{dt}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}\right) / \mathrm{ds}_{\mathrm{L}}>0$.
Proof. Follows from Result VII and (A2).
Proof of Observation 1. Follows from Results I(b), VIII, and IX. QED.

Proof of Corollary 1. With $\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}\right)<\mathrm{t}_{0}\left(\right.$ Observation 1) and $\mathrm{s}_{\mathrm{t}}()<0$, we have:
$\mathrm{s}\left(\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}\right), 0\right)>\mathrm{s}\left(\mathrm{t}_{0}, 0\right)=\mathrm{s}^{*}(0) \geq \mathrm{s}_{\mathrm{L}}$. Similarly, with $\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}\right)<\mathrm{t}_{1}$ (Observation 1), we have: $\mathrm{s}\left(\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}\right), 1\right)>\mathrm{s}\left(\mathrm{t}_{1}, 1\right)=\mathrm{s}^{*}(1)=\mathrm{s}_{\mathrm{W}} . Q E D$.

Proof of Observation 3. If

$$
\begin{equation*}
\Delta \equiv\left[\mathrm{W}^{*}(1)-\mathrm{W}^{*}(0)\right]-\pi_{\mathrm{B}}\left(\mathrm{~s}^{*}(0)\right)>0 \tag{A6}
\end{equation*}
$$

then the observation follows from eq. (20) (where $\pi_{\mathrm{B}} \equiv \pi_{\mathrm{B}}\left(\mathrm{s}^{*}(1)\right)$) and the Intermediate Value Theorem. Expanding $\pi_{\mathrm{B}}\left(\mathrm{s}^{*}(0)\right)$ from (22), we have
(A7) $\pi_{\mathrm{B}}\left(\mathrm{s}^{*}(0)\right)=\left(\mathrm{C}_{0}^{*}-\mathrm{C}_{1}^{*}\right) \mathrm{Q}^{*}(1)+\left\{\mathrm{t}_{1} \mathrm{~s}^{*}(1)-\mathrm{t}_{0} \mathrm{~s}^{*}(0)+\left[\mathrm{C}_{1}^{*}-\mathrm{c}\left(\mathrm{s}^{*}(0), 0\right)\right]\left[1-\left(\mathrm{s}^{*}(1) / \mathrm{s}_{\mathrm{L}}\right)\right]\right\}$.
Substituting (A7) into (A6), using eq. (18), and recalling that $\mathrm{t}_{\delta}=\mathrm{D}^{\prime}\left(\mathrm{E}^{*}(\delta)\right)$ and $\mathrm{E}^{*}(\delta)=\mathrm{s} *(\delta) \mathrm{Q}^{*}(\delta)$, we have

$$
\begin{align*}
\Delta=\mathrm{X} & +\mathrm{t}_{0} \mathrm{~s}^{*}(0)\left(\mathrm{Q}^{*}(1)-\mathrm{Q}^{*}(0)\right)+\left[\mathrm{D}\left(\mathrm{E}^{*}(0)\right)-\mathrm{D}\left(\mathrm{E}^{*}(1)\right)\right] \tag{A8}\\
& -\left[\mathrm{C}_{1}^{*}-\mathrm{c}\left(\mathrm{~s}^{*}(0), 0\right)\right]\left[1-\left(\mathrm{s}^{*}(1) / \mathrm{s}_{\mathrm{L}}\right)\right] \mathrm{Q}^{*}(1),
\end{align*}
$$

with (recalling Figure 1, where X corresponds with the negative of area c)

$$
\mathrm{Q}\left(\mathrm{C}_{1}^{*}\right)
$$

$$
\begin{equation*}
\mathrm{X} \equiv \underset{\mathrm{Q}\left(\mathrm{C}_{0}^{*}\right)}{\int}\left(\mathrm{P}(\mathrm{Q})-\mathrm{C}_{0}^{*}\right) \mathrm{dQ}>\left(\mathrm{C}_{1}^{*}-\mathrm{C}_{0}^{*}\right)\left(\mathrm{Q}^{*}(1)-\mathrm{Q}^{*}(0)\right) . \tag{A9}
\end{equation*}
$$

Using (A9), and substituting $\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}^{*}(0)\right)$ from (A5),
(A10) $\Delta>\left[\mathrm{C}_{1}^{*}-\mathrm{c}\left(\mathrm{s}^{*}(0), 0\right)\right]\left[\mathrm{Q}^{*}(1)\left(\mathrm{s}^{*}(1) / \mathrm{s}^{*}(0)\right)-\mathrm{Q}^{*}(0)\right]+\left[\mathrm{D}\left(\mathrm{E}^{*}(0)\right)-\mathrm{D}\left(\mathrm{E}^{*}(1)\right)\right]$

$$
=\left[D\left(E^{*}(0)\right)-\mathrm{t}_{\mathrm{e}}\left(\mathrm{~s}^{*}(0)\right) \mathrm{E}^{*}(0)\right]-\left[\mathrm{D}\left(\mathrm{E}^{*}(1)\right)-\mathrm{t}_{\mathrm{e}}\left(\mathrm{~s}^{*}(0)\right) \mathrm{E}^{*}(1)\right]=\int_{\mathrm{E}^{*}(1)}^{\mathrm{E}^{*}(0)}\left[\mathrm{D}^{\prime}(\mathrm{E})-\right.
$$

$\left.\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}^{*}(0)\right)\right] \mathrm{dE}$
Eq. (A10), Result VIII, and $\mathrm{E}^{*}(1) \leq \mathrm{E}^{*}(0)$ (Assumption 1) now imply

$$
\Delta>\int_{\mathrm{E}^{*}(1)}^{\mathrm{E}^{*}(0)}\left[\mathrm{D}^{\prime}(\mathrm{E})-\mathrm{t}_{1}\right] \mathrm{dE} \geq 0
$$

where the last inequality is due to the definition of $\mathrm{t}_{1}\left(=\mathrm{D}^{\prime}\left(\mathrm{E}^{*}(1)\right)\right), \mathrm{D}^{\prime \prime}() \geq 0$, and $\mathrm{E}^{*}(0) \geq \mathrm{E}^{*}(1)$ (Assumption 1). (A11) establishes the desired inequality, (A6). QED.

B. Section VI: Proof that Firm 1 Will Truthfully Report

Under Optimal Government Policies

Firm 1's profit from a report of $\delta 1 \mathrm{r}$, given a technology δ_{1}, are (with subsequent truthful reporting by firm 2):

$$
\pi^{*}\left(\delta_{1 \mathrm{r}} ; \delta_{1}\right) \equiv \mathrm{E}_{2}\left\{\int_{0}^{\min \left(\delta_{1 \mathrm{r}}, \delta_{1}\right)} \pi\left(\delta_{1 \mathrm{r}}, \delta_{2} ; \delta_{1}\right) \mathrm{f}\left(\delta_{2} ; \mathrm{I}_{2}\right) \mathrm{d} \delta_{2}\right\}
$$

where E_{2} is firm 1's expectation operator over firm 2's R\&D investment I_{2} and, per the logic given in the paper, $\pi\left(\delta_{1 \mathrm{r}}, \delta_{2} ; \delta_{1}\right)=0$ if $\delta_{1 \mathrm{r}}<\delta_{2}$ or $\delta_{1} \leq \delta_{2}$. For $\delta_{1 \mathrm{r}}<\delta_{1}$,

$$
\partial \pi^{*}() / \partial \delta_{1 \mathrm{r}}=\mathrm{E}_{2}\left\{\pi\left(\delta_{1 \mathrm{r}}, \delta_{1 \mathrm{r}} ; \delta_{1}\right) \mathrm{f}\left(\delta_{1 \mathrm{r}} ; \mathrm{I}_{2}\right)+\int_{0}^{\delta 1 \mathrm{r}}\left[\partial \pi\left(\delta_{1 \mathrm{r}}, \delta_{2} ; \delta_{1}\right) / \partial \delta_{1 \mathrm{r}}\right] \mathrm{f}\left(\delta_{2} ; \mathrm{I}_{2}\right) \mathrm{d} \delta_{2}\right\}>0
$$

where the inequality is due to $\pi\left(\delta_{1 \mathrm{r}}, \delta_{2} ; \delta_{1}\right)>0$ for $\delta_{2}=\delta_{1 \mathrm{r}}<\delta_{1}$, and the analog for eq. (28) $\left(\partial \pi\left(\delta_{1 \mathrm{r}}, \delta_{2} ; \delta_{1}\right) / \partial \delta_{1 \mathrm{r}}>0\right.$ for $\left.\delta_{2} \leq \delta_{1 \mathrm{r}}<\delta_{1}\right)$. For $\delta_{1 \mathrm{r}} \geq \delta_{1}$,

$$
\partial \pi^{*}() / \partial \delta_{1 \mathrm{r}}=\mathrm{E}_{2}\left\{\int_{0}^{\delta 1}\left[\partial \pi(\delta 1 \mathrm{r}, \delta 2 ; \delta 1) / \partial \delta_{1 \mathrm{r}}\right] \mathrm{f}(\delta 2 ; \mathrm{I} 2) \mathrm{d} \delta 2\right\} \leqq 0 \quad \text { when } \quad \delta 1 \mathrm{r} \geqq \delta_{1}
$$

with the sign relation again due to the analog for eq. (28) $(\partial \pi(\delta 1 \mathrm{r}, \delta 2 ; \delta 1) / \partial \delta 1 \mathrm{r} \leqq 0$ when $\delta_{1 \mathrm{r}} \geqq \delta_{1}>\delta_{2}$). Thus, the expected firm 1 profit $\pi^{*}()$ is maximized with a truthful report, $\delta_{1 \mathrm{r}}=\delta_{1}$.

C. Extension: Efficient Taxes and Standards Without Assumption 1

i. Section V. Proposition 1, Observations 1-3, and Corollary 1 give us the following revised statement of Proposition 2:

Proposition 2'. If $\mathrm{E}^{*}(1)<\mathrm{E}^{*}(0)\left(\right.$ or $\left.\pi_{\mathrm{B}}\left(\mathrm{s}^{*}(0)\right)<\mathrm{W}^{*}(1)-\mathrm{W}^{*}(0)\right)$, then fully efficient outcomes are produced by the following policy of emission taxes and per-unit-output emission standards: (1) Pigovian emission taxes (with optional first-best emission standards) in the symmetric technology cases (A) and (C); and (2) for the asymmetric technology case (B), a first-best "winner" standard, a more lax environmental standard for the "loser," and an emission tax that is less than its Pigovian counterpart: $\mathrm{s}_{\mathrm{W}}=\mathrm{s}^{*}(1)$, $\mathrm{s}_{\mathrm{L}}=\mathrm{S}_{\mathrm{L}}^{*} \in\left(\mathrm{~s}^{*}(1), \mathrm{s}^{*}(0)\right), \mathrm{t}_{\mathrm{e}}=\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}_{\mathrm{L}}^{*}\right)<\mathrm{t}_{1}$.

When the prior conditions of Proposition 2' are violated, we impose a plausible restriction on post-innovation emission standards in our asymmetric technology case (B): Because it is implausible for innovation to spur a relaxation in environmental performance standards, we restrict the case (B) emission standards to be no more lax than would prevail without innovation, $\max \left(\mathrm{s}_{\mathrm{W}}, \mathrm{s}_{\mathrm{L}}\right) \leq \mathrm{s}^{*}(0)$.

In view of Proposition 2', the remaining possibility is that emissions rise with innovation $\left(\mathrm{E}^{*}(1)>\mathrm{E}^{*}(0)\right)$ and, in addition, the most lax loser standard possible $\left(\mathrm{s}_{\mathrm{L}}=\mathrm{s}^{*}(0)\right)$ still provides firms with an incentive to overinvest in R\&D $\left(\pi_{\mathrm{B}}\left(\mathrm{s}^{*}(0)\right)>\mathrm{W}^{*}(1)-\right.$ $\left.\mathrm{W}^{*}(0)\right)$. For this circumstance, the following policy can optimally counter the persistent overinvestment problem: (1) set the environmental standards to maximally differentiate between the winning and losing firms, $\mathrm{s}_{\mathrm{W}}=\mathrm{s}^{*}(1)$ and $\mathrm{s}_{\mathrm{L}}=\mathrm{s}^{*}(0)$; (2) lower the emission tax t_{e} below its ex-post efficient level, $\mathrm{t}_{\mathrm{e}}<\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}^{*}(0)\right)$; and (3) compensate for the lower emission tax by levying a positive output tax, $\mathrm{t}_{\mathrm{q}}>0$, that preserves efficient pricing,

$$
\begin{equation*}
\mathrm{t}_{\mathrm{q}}=\mathrm{t}_{\mathrm{q}}\left(\mathrm{t}_{\mathrm{e}}\right) \mathrm{t}_{\mathrm{q}}: \mathrm{c}\left(\mathrm{~s}^{*}(0), 0\right)+\mathrm{t}_{\mathrm{e}} \mathrm{~s}^{*}(0)+\mathrm{t}_{\mathrm{q}}=\mathrm{C}_{1}^{*} . \tag{C1}
\end{equation*}
$$

Because the losing firm emits more pollutants per-unit-output than does the winning firm $\left(s^{*}(0)>s^{*}(1)\right)$, the reduced emission tax lowers the losing firm's per-unit-output costs more than it does for the winner. The winner's reduced cost advantage in turn lowers its
profits and the associated incentive to invest in R\&D. By lowering the emission tax sufficiently far (and raising the output tax in tandem), the overinvestment problem can be cured. Formally, this policy gives rise to winner profits of

$$
\begin{align*}
\pi_{\mathrm{B}}^{\mathrm{so}}\left(\mathrm{t}_{\mathrm{e}}\right) & =\left\{\left[\mathrm{c}\left(\mathrm{~s}^{*}(0), 0\right)+\mathrm{t}_{\mathrm{e}} \mathrm{~s}^{*}(0)+\mathrm{t}_{\mathrm{q}}\left(\mathrm{t}_{\mathrm{e}}\right)\right]-\left[\mathrm{c}\left(\mathrm{~s}^{*}(1), 1\right)+\mathrm{t}_{\mathrm{e}} \mathrm{~s}^{*}(1)+\mathrm{t}_{\mathrm{q}}\left(\mathrm{t}_{\mathrm{e}}\right)\right] \mathrm{Q}^{*}(1)\right. \tag{C2}\\
& =\left\{\mathrm{c}\left(\mathrm{~s}^{*}(0), 0\right)-\mathrm{c}\left(\mathrm{~s}^{*}(1), 1\right)+\mathrm{t}_{\mathrm{e}}\left(\mathrm{~s}^{*}(0)-\mathrm{s}^{*}(1)\right)\right\} \mathrm{Q}^{*}(1),
\end{align*}
$$

where the second equality is obtained by substituting for $\mathrm{t}_{\mathrm{q}}()$ from eq. (C1), and differentiating reveals that the winner's profits decline with a reduced emission tax, $\partial \pi_{\mathrm{B}}^{\mathrm{SO}}\left(\mathrm{te}_{\mathrm{e}}\right) / \partial \mathrm{t}_{\mathrm{e}}=\left(\mathrm{s}^{*}(0)-\mathrm{s}^{*}(1)\right) \mathrm{Q}^{*}(1)>0$.

Proposition 2". If $\mathrm{E}^{*}(1)>\mathrm{E}^{*}(0)$ and $\pi_{\mathrm{B}}\left(\mathrm{s}^{*}(0)\right)>\mathrm{W}^{*}(1)-\mathrm{W}^{*}(0)$, then fully efficient outcomes can be prompted by a policy of the following form: (1) Pigovian emission taxes in cases (A) and (C); and (2) for case (B), a first-best "winner" standard ($\mathrm{s}_{\mathrm{W}}=\mathrm{s}^{*}(1)$), no change in the "loser" standard $\left(\mathrm{s}_{\mathrm{L}}=\mathrm{s}^{*}(0)>\mathrm{s}^{*}(1)\right)$, a low emission $\operatorname{tax}\left(\mathrm{t}_{\mathrm{e}}<\mathrm{t}_{\mathrm{e}}\left(\mathrm{s}^{*}(0)\right)<\right.$ $\max \left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)$), a positive output $\operatorname{tax}\left(\mathrm{t}_{\mathrm{q}}=\mathrm{t}_{\mathrm{q}}\left(\mathrm{t}_{\mathrm{e}}\right)>0\right)$, and a combined per-unit-output tax (for the winner) that is less than the marginal pollution damage $\left(\mathrm{t}_{\mathrm{q}}+\mathrm{t}_{\mathrm{e}} \mathrm{s}^{*}(1)<\mathrm{D}^{\prime}\left(\mathrm{E}^{*}(1)\right) \mathrm{s}^{*}(1)\right)$.
ii. Section VI. All in Section VI extends directly, with one change: The optimal Section V policy must allow for output taxes (as described in Proposition 2" above). Specifically, our Section V policy of taxes and standards now stipulates the emission tax t_{e}, output tax t_{q}, "winner" standard s_{W}, and "loser" standard s_{L} that satisfy: (i) efficient "winner" emissions, $\mathrm{s}_{\mathrm{W}}=\mathrm{s} *\left(\delta_{\mathrm{Wr}}\right)$, (ii) efficient pricing (with $\mathrm{s}_{\mathrm{L}}>\mathrm{s}_{\mathrm{W}}, \mathrm{t}_{\mathrm{e}}<\mathrm{t}_{\mathrm{W}_{\mathrm{Wr}}}$, and $\mathrm{t}_{\mathrm{q}} \geq 0$)

$$
\begin{equation*}
\mathrm{c}\left(\mathrm{~s}_{\mathrm{L}}, \delta_{\mathrm{Lr}}\right)+\mathrm{t}_{\mathrm{e}} \mathrm{~S}_{\mathrm{L}}+\mathrm{t}_{\mathrm{q}}=\mathrm{C}_{\delta_{\mathrm{Wr}}}^{*} \tag{C3}
\end{equation*}
$$

and (iii) a "winner" payoff exactly equal to the societal gains from the excess innovation, $\delta_{\mathrm{Wr}}-\delta_{\mathrm{Lr}}$:
(C4) Winner Payoff $=\mathrm{Q}^{*}\left(\delta_{\mathrm{Wr}}\right)\left\{\mathrm{C}_{\delta_{\mathrm{Wr}}}^{*}-\mathrm{c}\left(\mathrm{s}^{*}\left(\delta_{\mathrm{Wr}}\right), \delta_{\mathrm{Wr}}\right)-\mathrm{t}_{\mathrm{e}} \mathrm{s}^{*}\left(\delta_{\mathrm{Wr}}\right)-\mathrm{t}_{\mathrm{q}}\right\}=\mathrm{W}^{*}\left(\delta_{\mathrm{Wr}}\right)-$ $\mathrm{W}^{*}\left(\delta_{\mathrm{Lr}}\right)$

For notational convenience, we will denote these (generalized) Section V policies by $\left\{\mathrm{Z}\left(\delta_{\mathrm{Wr}}, \delta_{\mathrm{Lr}}\right)\right\} \equiv\left\{\mathrm{s}_{\mathrm{W}}=\mathrm{s}^{*}\left(\delta_{\mathrm{Wr}}\right), \mathrm{s}_{\mathrm{L}}\left(\delta_{\mathrm{Wr}}, \delta_{\mathrm{Lr}}\right), \mathrm{t}_{\mathrm{e}}\left(\delta_{\mathrm{Wr}}, \delta_{\mathrm{Lr}}\right), \mathrm{t}_{\mathrm{q}}\left(\delta_{\mathrm{Wr}}, \delta_{\mathrm{Lr}}\right)\right\}$. (As above, we will uniquely identify these policies with the restriction that $\mathrm{s}_{\mathrm{L}} \leq \mathrm{s}^{*}(0)$ and appealing to
positive output taxes only when they are needed to equate the rents of successful innovators with the societal gains from the innovation.) With this revised $\{Z()\}$, we have:

Proposition 3'. Given the optimal environmental policies, $\left\{\mathrm{Z}\left(\delta_{\mathrm{Wr}}, \delta_{\mathrm{Lr}}\right)\right\}$, and the technology verification requirement described in the paper, there is a subgame perfect equilibrium in which firms truthfully reveal their technologies to the government and, hence, first-best outcomes are attained.
iii. Proofs of Results Without Assumption 1.

Proof of Proposition 1 in the paper (No Assumption 1). Define

$$
\begin{align*}
& \mathrm{X}_{1} \equiv\left(\mathrm{C}_{0}^{*}-\mathrm{C}_{1}^{*}\right) \mathrm{Q}^{*}(1) \quad, \mathrm{X}_{2} \equiv\left(\mathrm{C}_{0}^{*}-\left[\mathrm{c}\left(\mathrm{~s}^{*}(1), 0\right)+\mathrm{t}_{1} \mathrm{~s}^{*}(1)\right]\right) \mathrm{Q}^{*}(1) \tag{C5}\\
& \mathrm{Q}\left(\mathrm{C}_{1}^{*}\right) \\
& \mathrm{X}_{3} \equiv \iint_{\mathrm{Q}\left(\mathrm{C}_{0}^{*}\right)}\left(\mathrm{P}(\mathrm{Q})-\mathrm{C}_{0}^{*}\right) \mathrm{dQ}<0 \\
& \mathrm{X}_{4} \equiv\left\{\left[\mathrm{D}^{\prime}\left(\mathrm{E}^{*}(1)\right) \mathrm{E}^{*}(1)-\mathrm{D}\left(\mathrm{E}^{*}(1)\right)\right]-\left[\mathrm{D}^{\prime}\left(\mathrm{E}^{*}(0)\right) \mathrm{E}^{*}(0)-\mathrm{D}\left(\mathrm{E}^{*}(0)\right)\right]\right\}
\end{align*}
$$

where $\mathrm{X}_{3}<0$ is due to $\mathrm{C}_{0}^{*}>\mathrm{C}_{1}^{*}$ (and hence, $\mathrm{P}(\mathrm{Q})<\mathrm{C}_{0}^{*}$ for $\mathrm{Q} \square\left(\mathrm{Q}\left(\mathrm{C}_{0}^{*}\right), \mathrm{Q}\left(\mathrm{C}_{1}^{*}\right)\right)$). Noting that $\mathrm{W}^{*}(\delta)$ can be written as

$$
\mathrm{W}^{*}(\delta)=\int_{0}^{\mathrm{Q}\left(\mathrm{C}_{\delta}^{*}\right)} \mathrm{P}(\mathrm{z}) \mathrm{dz}-\mathrm{C}_{\delta}^{*} \mathrm{Q}\left(\mathrm{C}_{\delta}^{*}\right)+\left\{\mathrm{D}^{\prime}\left(\mathrm{E}^{*}(\delta)\right) \mathrm{E}^{*}(\delta)-\mathrm{D}\left(\mathrm{E}^{*}(\delta)\right)\right\},
$$

we can expand $\mathrm{W}^{*}(1)-\mathrm{W}^{*}(0)$ as follows:

$$
\begin{equation*}
\mathrm{W}^{*}(1)-\mathrm{W}^{*}(0)=\mathrm{X}_{1}+\mathrm{X}_{3}+\mathrm{X}_{4} \tag{C6}
\end{equation*}
$$

Similarly, expanding $\pi_{\mathrm{B}}\left(\mathrm{s}^{*}(1)\right)$ in (22),

$$
\pi_{\mathrm{B}}\left(\mathrm{~s}^{*}(1)\right)=\mathrm{X}_{1}-\mathrm{X}_{2}
$$

With $\mathrm{X}_{3}<0$, and $\mathrm{X}_{4} \leq\left(\mathrm{t}_{1}-\mathrm{t}_{0}\right) \mathrm{E}^{*}(1)$, the following is a sufficient condition for overinvestment to occur:

$$
\begin{equation*}
\mathrm{X}_{2}+\left(\mathrm{t}_{1}-\mathrm{t}_{0}\right) \mathrm{E}^{*}(1)<0 \Rightarrow \mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}<0 \Rightarrow \pi_{\mathrm{B}}\left(\mathrm{~s}^{*}(1)\right)>\mathrm{W}^{*}(1)-\mathrm{W}^{*}(0) \tag{C7}
\end{equation*}
$$

Expanding the left-hand-side of (C7) (substituting for $\mathrm{C}_{0}^{*}=\mathrm{c}\left(\mathrm{s}^{*}(0), 0\right)+\mathrm{t}_{0} \mathrm{~s}^{*}(0)$),

$$
\begin{equation*}
\mathrm{X}_{2}+\left(\mathrm{t}_{1}-\mathrm{t}_{0}\right) \mathrm{E}^{*}(1)=\mathrm{Q}^{*}(1)\left\{\left[\mathrm{c}\left(\mathrm{~s}^{*}(0), 0\right)-\mathrm{c}\left(\mathrm{~s}^{*}(1), 0\right)\right]+\mathrm{t}_{0}\left[\mathrm{~s}^{*}(0)-\mathrm{s}^{*}(1)\right]\right\} \tag{C8}
\end{equation*}
$$

$$
=\mathrm{Q}^{*}(1) \int_{\mathrm{s}^{*}(1)}^{\mathrm{s}^{*}(0)}\left\{\mathrm{c}_{\mathrm{s}}(\mathrm{~s}, 0)+\mathrm{t}_{0}\right\} \mathrm{ds}<0
$$

where the inequality follows from $\mathrm{c}_{\mathrm{s}}\left(\mathrm{s}^{*}(0), 0\right)+\mathrm{t}_{0}=0$ (by the definition of $\left.\mathrm{s}^{*}(0)=\mathrm{s}\left(\mathrm{t}_{0}, 0\right)=\operatorname{argmin} \mathrm{c}(\mathrm{s}, 0)+\mathrm{t}_{0} \mathrm{~s}\right), \mathrm{c}_{\mathrm{ss}}>0$, and $\mathrm{s}^{*}(0)>\mathrm{s}^{*}(1) . Q E D$.

Note: Proofs of Observation 1, Observation 2, and Corollary 1 do not rely upon

Assumption 1.

Proof of Proposition 2". At $\mathrm{t}_{\mathrm{e}}^{0} \equiv \mathrm{t}_{\mathrm{e}}\left(\mathrm{s}^{*}(0)\right)$ (as defined in eq. (21)), we have (by construction and assumption) $\mathrm{t}_{\mathrm{q}}\left(\mathrm{t}_{\mathrm{e}}^{0}\right)=0$ and (with $\pi_{\mathrm{B}}^{\mathrm{so}}\left(\mathrm{t}_{\mathrm{e}}\right)$ as defined in (C2) above and $\pi_{\mathrm{B}}\left(\mathrm{s}_{\mathrm{L}}\right)$ as defined in eq. (22))

$$
\pi_{\mathrm{B}}^{\mathrm{so}}\left(\mathrm{t}_{\mathrm{e}}^{0}\right)=\pi_{\mathrm{B}}\left(\mathrm{~s}^{*}(0)\right)>\mathrm{W}^{*}(1)-\mathrm{W}^{*}(0) .
$$

Furthermore, at $\mathrm{t}_{\mathrm{e}}^{1} \equiv-\left[\mathrm{c}\left(\mathrm{s}^{*}(0), 0\right)-\mathrm{c}\left(\mathrm{s}^{*}(1), 1\right)\right] /\left[\mathrm{s}^{*}(0)-\mathrm{s}^{*}(1)\right]<\mathrm{t}_{\mathrm{e}}^{\mathrm{o}}$, we have

$$
\pi_{\mathrm{B}}^{\mathrm{so}}\left(\mathrm{t}_{\mathrm{e}}^{1}\right)=0<\mathrm{W}^{*}(1)-\mathrm{W}^{*}(0) .
$$

Therefore, by the Intermediate Value Theorem, there is a $\mathrm{te}^{*} \in\left(\mathrm{t}_{\mathrm{e}}^{1}, \mathrm{t}_{\mathrm{e}}^{0}\right)$ such that

$$
\begin{equation*}
\pi_{\mathrm{B}}^{\mathrm{SO}}\left(\mathrm{t}_{\mathrm{e}}^{*}\right)=\mathrm{W}^{*}(1)-\mathrm{W}^{*}(0) \tag{C9}
\end{equation*}
$$

By (C9) and eq. (C1), the following policy yields a first-best: $\mathrm{t}_{\mathrm{e}}=\mathrm{t}_{\mathrm{e}}^{*}, \mathrm{t}_{\mathrm{q}}=\mathrm{t}_{\mathrm{q}}\left(\mathrm{t}_{\mathrm{e}}^{*}\right), \mathrm{s}_{\mathrm{L}}=\mathrm{s} *(0)$, and $\mathrm{sW}_{\mathrm{W}}=\mathrm{s}^{*}(1)$. With $\mathrm{t}_{\mathrm{e}}^{*}<\mathrm{t}_{\mathrm{e}}^{0}$ and $\mathrm{dt}_{\mathrm{q}}\left(\mathrm{t}_{\mathrm{e}}\right) / \mathrm{dt}_{\mathrm{e}}<0$ (by eq. (C1)), we have $\mathrm{t}_{\mathrm{q}}\left(\mathrm{te}_{\mathrm{e}}^{*}\right)>0$. Finally, by eq. (C9), the definition of $\pi_{\mathrm{B}}^{\mathrm{so}}\left(\mathrm{t}_{\mathrm{e}}\right)$ in (C2), and $\mathrm{W}^{*}(1)-\mathrm{W}^{*}(0)>0$, we have

$$
\begin{equation*}
\pi_{\mathrm{B}}^{\mathrm{SO}\left(\mathrm{t}_{\mathrm{e}}^{*}\right)>0 \Rightarrow \mathrm{c}\left(\mathrm{~s}^{*}(0), 0\right)+\mathrm{t}_{\mathrm{e}}^{*} \mathrm{~s}^{*}(0)>\mathrm{c}\left(\mathrm{~s}^{*}(1), 1\right)+\mathrm{t}_{\mathrm{e}}^{*} \mathrm{~s}^{*}(1) ~} \tag{C10}
\end{equation*}
$$

Furthermore, eq. (C10) and eq. (C1) imply

$$
\mathrm{t}_{\mathrm{q}}\left(\mathrm{t}_{\mathrm{e}}^{*}\right)=\mathrm{C}_{1}^{*}-\left[\mathrm{c}\left(\mathrm{~s}^{*}(0), 0\right)+\mathrm{t}_{\mathrm{e}}^{*} \mathrm{~s}^{*}(0)\right]<\mathrm{C}_{1}^{*}-\left[\mathrm{c}\left(\mathrm{~s}^{*}(1), 1\right)+\mathrm{t}_{\mathrm{e}}^{*} \mathrm{~s}^{*}(1)\right]=\mathrm{t}_{1} \mathrm{~s}^{*}(1)-\mathrm{t}_{\mathrm{e}}^{*} \mathrm{~s}^{*}(1)
$$

which gives us the final inequality in Proposition 2" $\left(\mathrm{t}_{\mathrm{q}}+\mathrm{t}_{\mathrm{e}} \mathrm{s}^{*}(1)<\mathrm{t}_{1} \mathrm{~s}^{*}(1)\right)$. QED.

