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This supplementary appendix generalizes the linear demand system analyzed in Section 

IV of the text to allow partial demands to exhibit network effects directly, so that the state of the 

other side of the system affects pricing, and analyzes the relation between maximizing output 

and maximizing private value.  Consider one side of the system with N firms and with demands 

given by a simple generalization of (10):  
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where Qoe is the expected partial demand on the other side of the system, and ϕ is a positive 

constant. (Superscripts are generally dropped in this paragraph to avoid clutter.)  The larger is ϕ, 

the more important are direct network effects on this side of the system.  Suppose all firms on 

this side of the system have unit cost C', net of interchange.  (If this is the acquiring side of the 

system, C'=C+T, while C'=C-T on the issuing side.)  Multiplying (S1) by (Pi-C'), differentiating, 

and solving for a symmetric equilibrium conditional on Qoe, we obtain 
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where, as in the text, β = N(N-1)Θ.   

To obtain a symmetric fulfilled expectations equilibrium, one must solve for conditional 

equilibrium on both sides of the system, as just above, set expected partial demands equal to 

actual partial demands, and solve the resulting pair of linear equations.  In order for this solution 

to involve positive partial demands, network effects must not be too large:  
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Prices are obtained by inverting the two partial demand functions, substituting actual for 

expected partial demands. 

If there are Na acquirers, with linear demands as above and net unit costs equal to (Ca+T), 

and Ni issuers, with linear demands as above and net unit costs equal to (Ci-T), the fulfilled 

expectations equilibrium is as follows: 
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where βm, βc, Dm, and Dc are defined by equations (13c) and (13d), above,  

(S4c)  dm = Dm(2Bc+βc) + ϕmDc(Sc+βc), dc = Dc(2Bm+βm) + ϕcDm(Sm+βm),  

(S4d)  bm = Bm(2Bc+βc) – ϕmBc(Sc+βc), bc = Bc(2Bm+βm) –  ϕcBm(Sm+βm), and 

(S4e)  Z = (2Bm+βm)(2Bc+βc) –  ϕmϕc(Sm+βm)(Sc+βc). 

Note that condition (S3) is equivalent to Z > 0.  The necessary and sufficient conditions for 

equilibrium Qc to be increasing in T (i.e., bc > 0) and Qm to be decreasing in T (i.e., bm > 0) also 

require that network effects not be too large.  These two conditions, which are sufficient for Z > 

0, will both be satisfied for all non-negative βm and βc if and only if 

(S5)   ϕc < Bc/Bm and ϕm < Bm/Bc.  

As in Section IV, total system output is a quadratic in T; it is maximized at 
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This, of course, reduces to (14) when ϕi = ϕc = 0.  Here, from (S4c) and (S4d), the output-

maximizing interchange fee depends on all the cost and demand parameters in the system, 

including the ϕs and the βs. 
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It is somewhat surprising that the bounds on ϕm and ϕc introduced above do not generally 

suffice to sign the derivatives of TQN with respect to Dm, Dc, Bm, or Bc.  (Under bilateral 

monopoly, TQN is increasing in Bi and decreasing in Ba; if (S5) is satisfied it is increasing in Da 

and decreasing in Di.)  On the other hand, it is easy to show that ∂TQN/∂ϕm > 0 and ∂TQN/∂ϕc < 0.  

The larger is ϕm, for instance, the greater is the spillover benefit to total output from increasing 

Qc by raising T, and this benefit shows up as an increase in Qm.  It is straightforward to show that 

∂TQN/∂βm < 0 and ∂TQN/∂βc > 0.  All else equal, the more intense is competition on the acquiring 

side, for instance, the greater the reduction in Pm induced by lowering T; and in this model a 

reduction in Pm increases Qc as well as Qm. 

From equations (S4), the system’s objective function, V, is proportional to 
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 Comparing equations (17) and (S7), it is straightforward to characterize the privately 

optimal choice of interchange fee in this model.  First, if ω' = 1/2, private value maximization 

implies maximization of total system output.  Second, following equation (19), for fixed TQN, the 

difference between the privately optimal interchange fee and the output-maximizing interchange 

fee is a decreasing function of ω'.  (Much as in Section IV, the derivative of total system markup, 

[(Pa + Pi) – (Ca + Ci)], with respect to T has the sign of (Sc – bm), which is proportional to the 

difference between the two bracketed terms in the denominator of (S7b).)  This is a relatively 

weak result, however, since in this model with imperfect competition on both sides of the 

system, both TQN and ω' depend on the Bs, βs, and ϕs. 
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The determination of ω′ via (S7b) is sufficiently complex that, almost regardless of 

system objectives, it would seem hard to guess whether a private value-maximizing interchange 

fee would be above or below the output-maximizing level.  (In the polar case considered at the 

end of Section IV, as long as the first of conditions (S5) is satisfied, βm → ∞ implies ω' → 0, 

leading to a choice of T above the output-maximizing level.)  In general, ω' is increasing in α 

and ϕc and decreasing in ϕm, and, if conditions (S5) are satisfied, it is increasing in βc and 

decreasing in βm.  It follows that, like the output-maximizing T, the T that maximizes private 

value is decreasing in ϕc and increasing in ϕm. 
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