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Appendix A: Discussion of Counterintegration

Allowing U2 and D2 to integrate does not affect the model’s prediction that enclosure

costs can make it unprofitable for a technologically superior upstream unit to integrate

downstream. To focus on this result, the appendix considers the case where U1 has a

technological advantage (i.e., ∆ ≥ 0).

To incorporate U2 and D2’s ability to integrate, I modify the date zero stage of the

model as follows. At date zero, U1 and D1 decide whether to integrate. After observing U1

and D1’s organizational form, U2 and D2 decide whether to integrate. U2 and D2 employ

the same tie-breaking rule as U1 and D1 in that U2 and D2 integrate whenever they are

indifferent between integrating and not integrating.1

Because the downstream units are identical at date zero, the gains from vertical inte-

gration do not depend on the identity of the integrating downstream unit. Thus, I assume,

without loss of generality, that if Ui integrates, then Ui integrates with Di for i = 1, 2.

If U1 has a technological advantage, then integration is a weakly dominant strategy for

U2 and D2. To see that this is true, note that given U1 and D1’s organizational form,

the following statements are true: i) U2-D2 integration increases the profitability of U2-D2

trade; ii) U2-D2 integration does not affect any unit’s expected gain from U1-D2 trade; and
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iii) U1’s technological advantage leads D1 to purchase from U1 regardless of U2 and D2’s

organizational form. Hence, U2-D2 integration cannot decrease U2 and D2’s joint payoff.

Given this result, it is straightforward to prove the following.

Proposition 4. There exists a range of technologies, ∆ ∈ [X,V ) such that i) X > 0;

ii) D2 purchases from U1 if and only if U1 and D1 do not integrate, and iii) U1 and D1

do not integrate.

Appendix B: Proofs

Proof to Lemma 1.

Let πi and πj denote unit Ui’s and Dj’s respective payoffs. Solving the optimization in

(3) shows that if U1, D1, U2, and D2 are independent, then the units earn the following

expected payoffs

π1 = (I1 + I2)
³
∆+f(h(2))

2
− h (2)

´
π2 = (2− I1 − I2)

³
f(h(2))
2
− h (2)

´
πi = ki +

¡
Ii
2
− Ijγ

¢
∆+

¡
1
2
− γ

¢
f (h (2)) , for i, j = 1, 2; i 6= j

(5)

Straightforward comparisons of these payoffs completes the proof.

Proof to Lemma 2.

Let π11 denotes an integrated U1-D1’s expected payoff. Solving the optimization in (4)

shows that if U1 and D1 are integrated and if U2 and D2 are independent, then the units
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earn the following expected payoffs.

π11 =
k1 + I1 [∆+ f (h (1))− h (1)] + I2

³
1
2
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³
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³
h
³

2
1−γ
´´´
− h
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2
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´´

+
¡
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¢
f (h (2))

π2 = (2− I1 − I2)
³
f(h(2))
2
− h (2)

´
π2 =

k2 + I2
1
2
(1− γ)

³
∆+ f

³
h
³

2
1−γ
´´´

+ (1− I2) f(h(2))2

−γ [I1 (∆+ f (h (1)))− (1− I1) f (h (2))]

(6)

Part (i). Define W and Y (γ) as follows.

W ≡ f(h(2))
2
− f (h (1)) + h (1)

Y (γ) ≡ f(h(2))
1−γ − f

³
h
³

2
1−γ
´´(7)

The regularity assumptions on f imply W < 0 < Y (γ).

Part (ii) - (iv). Comparing the payoffs in (6) shows that a) U2 always prefers to trade

with as many downstream units as possible; b) if ∆ ≥ Y (γ), then D2 prefers to trade with

U1; c) if ∆ < Y (γ), then D2 prefers to trade with U2; d) if ∆ ≥W , then U1 and D1 trade

internally, and e) if ∆ < W , then D1 orders from U2.

U1 prefers to invest in supplying quality to D2 rather than having D2 order from U2 if

and only if

∆ > −f
µ
h

µ
2

1− γ

¶¶
+

2

1− γ

µ
h

µ
2

1− γ

¶
− γf (h (2))

¶
(8)

However, U1’s incentive to invest in D2’s quality is lower after D2 commits to purchasing

from U1 (and commits to not purchasing from U2). If D2 has committed to trading with
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U1, then U1 will invest in supplying quality to D2 if and only if

∆ > −f
µ
h

µ
2

1− γ

¶¶
+

2

1− γ
h

µ
2

1− γ

¶
(9)

The regularity conditions on f imply that the right side of the inequalities in (8) and (9)

are strictly less than Y (γ); thus, if D2 prefers to order from U1-D1, then U1-D1 will invest

in supplying quality to D2. Hence, statements (a)-(e) determine the equilibrium order

placements. Statements (a)-(e) also prove that W and Y (γ) satisfy parts (ii) - (iv) of the

lemma.

Straightforward substitution proves parts Y (0) = 0 and lim
γ→1

Y (γ) =∞. Differentiating

Y (γ) gives

dY (γ)

dγ
=
f (h (2))

(1− γ)2
− 4

(1− γ)3

dh
³

2
1−γ
´

dγ

The regularity conditions on f make the first term of this derivative positive. The concavity

of f and the inverse function properties of h imply that h (x) is decreasing in x. Thus,

dh( 2
1−γ )
dγ

< 0 for γ ∈ (0, 1). Therefore, dY (γ)
dγ

> 0 for all γ ∈ (0, 1). ¤

Proof to Proposition 2.

Let B denote the bilateral gains from integration. Formally,

B ≡ f (h (1))− h (1)− f (h (2)) + h (2)(10)

Part (i) follows immediately from the lemmas.

The lemmas show that ∆ ≥ Y implies that D1 and D2 order from U1 regardless of
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U1 and D1’s integration decision. Comparing (5) and (6) shows that if both D1 and D2

purchase from U1, then integration (weakly) increases U1 and D1’s joint payoff if and only

if µ
1

2
− γ

¶
f (h (2))− h (2)−

·
1− γ

2
f

µ
h

µ
2

1− γ

¶¶
− h

µ
2

1− γ

¶¸
≤ γ∆

2
+B(11)

The regularity conditions on f imply that B is positive and that

1− γ

2
f (h (2))− h (2) < 1− γ

2
f

µ
h

µ
2

1− γ

¶¶
− h

µ
2

1− γ

¶

Thus, (11) holds for all nonnegative ∆. Y (γ) > 0, so ∆ ≥ Y (γ) implies that U1-D1

integration is profitable. This proves part (ii).

The lemmas show that ∆ ∈ [W, 0) implies the following: a) If U1 and D1 integrate, then

D1 orders from U1, and D2 orders from U2. b) If U1 and D1 do not integrate, then both

D1 and D2 order from U2. Comparing (5) and (6) and using (7) shows that if ∆ ∈ [W, 0),

then U1 and D1 earn a larger joint payoff from outcome (a) than from outcome (b). Thus,

if ∆ ∈ [W, 0), then U1 and D1 integrate; D1 orders from U1, and D2 orders from U2. This

proves part (iii). ¤

Proof of proposition 3.

Lemmas 1 and 2 say that ∆ ∈ [0, Y (γ)) implies a) D1 purchases from U1; b) if U1 and

D1 do not integrate, then D2 purchases from U1, and c) if U1 and D1 integrate, then D2

purchases from U2. Given these trading strategies, U1 and D1 will integrate if and only if

π11 ≥ π1 + π1(12)
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Define B∗ (∆, γ) as follows

B∗ (∆, γ) ≡ 1− 2γ
2

∆+
1

2
f (h (2))− h (2)

Using the payoffs in (6) and (5) shows that (12) is equivalent to

B ≥ B∗ (∆, γ)

Straightforward calculations show the following:

B∗ (0, γ) > 0

∂B∗(0,γ)
∂γ

= 0; ∂B∗(∆,γ)
∂γ

< 0, for ∆ > 0

∂B∗(∆,γ)
∂∆

> 0, for γ < 1
2
; ∂B∗(∆,γ)

∂∆
< 0, for γ > 1

2

(13)

Proof to Proposition 4.

Step 1. Assume ∆ ≥ 0. Appendix A shows that ∆ ≥ 0 implies that U2 and D2 integrate.

Define X and Z as follows

X ≡ 2f (h (1))− 2h (1)− f (h (2))

Z (γ) ≡ 2
1−γ (f (h (1))− h (1))− f

³
h
³

2
1−γ
´´

The regularity conditions on f imply

f (h (1))− h (1) > f (h (2))− h (2)(14)
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and

f (h (2)) > 2h (2)(15)

Combining (14) and (15) shows that X > 0. Comparing X and Z shows that X < Z for all

γ ∈ (0, 1).

Straightforward calculations similar to the calculations used to prove the lemmas show

the following: a) ∆ ≥ 0 implies that D1 purchases from U1 regardless of U1 and D1’s

integration decision. b) The regularity conditions on f and ∆ ≥ 0 imply that if D2 orders

from U1, then U1 sells to D2 and invest a positive amount in D2’s input quality regardless of

whether U1 and D1 integrate. c) If U1 and D1 do not integrate, then an integrated U2-D2

purchases from U1 if ∆ ≥ X and an integrated U2-D2 trades internally if ∆ < X. d) If

U1 and D1 are integrated, then an integrated U2-D2 purchases from U1 if ∆ > Z and an

integrated U2-D2 trades internally if ∆ < Z. Thus ∆ ∈ [X,Z) is a range of technological

advantages for which an integrated U2-D2 purchases from U1 if and only if U1 and D1 are

not integrated.

Step 2. If ∆ ∈ [X,Z), then D2’s purchasing strategy implies that U1 and D1 are better

off remaining independent if and only if

µ
1

2
− γ

¶
∆ > (1− γ) f (h (1))− h (1)−

µ
3

2
− γ

¶
f (h (2)) + 2h (2)

At ∆ = X + 2ε, this inequality is equivalent to

ε− γ (f (h (1))− 2h (1) + 2ε) > −f (h (2)) + 2h (2)(16)
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The left side of (16) is linear in γ, so if (16) holds for γ = 0 and γ = 1, then (16) holds for

all γ ∈ [0, 1]. At γ = 0, (16) is equivalent to

ε > −f (h (2)) + 2h (2)

The regularity conditions on f imply that this inequality holds for ε ≥ 0. At γ = 1, (16) is

equivalent to

ε < f (h (2))− 2h (2)− f (h (1)) + 2h (1)(17)

The regularity conditions on f imply that the right side of (17) is positive, so there exists

an εC > 0 such that (17) holds for all ε ∈ [0, εC).

Define

V ≡ min {Z,X + 2εC}

From above, if ∆ ∈ [X,V ), then U1-D1 integration reduces the sum of U1’s and D1’s payoffs

for all γ ∈ (0, 1). Hence, technologies with ∆ ∈ [X,V ) satisfy part (iii) of the proposition.

Step 1 of the proof and the definition of V shows that these technologies also satisfy parts

(i) and (ii) of the proposition. ¤

Notes

1There are other ways to model vertical integration decisions within a successive duopoly,

and the modelling assumptions can affect the equilibrium integration decisions. For this
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reason, I do not claim to predict the equilibrium industry structure. Instead, I am content

to show that allowing U2-D2 integration does not invalidate the claim that enclosure costs

can lead firms to forgo vertical integration.
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