Supplemental Materials for D. Lee Heavner, "Vertical Enclosure: Vertical Integration and the Reluctance to

Purchase from a Competitor," The Journal of Industrial Economics, LII (2), June 2004, pp. 179-199

Appendix A: Discussion of Counterintegration

Allowing U2 and D2 to integrate does not affect the model's prediction that enclosure costs can make it unprofitable for a technologically superior upstream unit to integrate downstream. To focus on this result, the appendix considers the case where U1 has a technological advantage (i.e., $\Delta \geq 0$).

To incorporate U_2 and D_2 's ability to integrate, I modify the date zero stage of the model as follows. At date zero, U1 and D1 decide whether to integrate. After observing U1 and $D1$'s organizational form, $U2$ and $D2$ decide whether to integrate. $U2$ and $D2$ employ the same tie-breaking rule as U_1 and D_1 in that U_2 and D_2 integrate whenever they are indifferent between integrating and not integrating.¹

Because the downstream units are identical at date zero, the gains from vertical integration do not depend on the identity of the integrating downstream unit. Thus, I assume, without loss of generality, that if Ui integrates, then Ui integrates with Di for $i = 1, 2$.

If U1 has a technological advantage, then integration is a weakly dominant strategy for U2 and D2. To see that this is true, note that given U1 and D1's organizational form, the following statements are true: i) $U2-D2$ integration increases the profitability of $U2-D2$ trade; ii) U2-D2 integration does not affect any unit's expected gain from U1-D2 trade; and iii) U1's technological advantage leads D1 to purchase from U1 regardless of U2 and D2's organizational form. Hence, U2-D2 integration cannot decrease U2 and D2's joint payoff. Given this result, it is straightforward to prove the following.

Proposition 4. There exists a range of technologies, $\Delta \in [X, V)$ such that i) $X > 0$; ii) D2 purchases from U1 if and only if U1 and D1 do not integrate, and iii) U1 and D1 do not integrate.

Appendix B: Proofs

Proof to Lemma 1.

Let π^i and π_j denote unit Ui's and Dj's respective payoffs. Solving the optimization in (3) shows that if U_1 , D_1 , U_2 , and D_2 are independent, then the units earn the following expected payoffs

(5)
\n
$$
\pi^{1} = (I_{1} + I_{2}) \left(\frac{\Delta + f(h(2))}{2} - h(2) \right)
$$
\n
$$
\pi^{2} = (2 - I_{1} - I_{2}) \left(\frac{f(h(2))}{2} - h(2) \right)
$$
\n
$$
\pi_{i} = k_{i} + \left(\frac{I_{i}}{2} - I_{j} \gamma \right) \Delta + \left(\frac{1}{2} - \gamma \right) f(h(2)), \text{ for } i, j = 1, 2; i \neq j
$$

Straightforward comparisons of these payoffs completes the proof.

Proof to Lemma 2.

Let π_1^1 denotes an integrated U1-D1's expected payoff. Solving the optimization in (4) shows that if $U1$ and $D1$ are integrated and if $U2$ and $D2$ are independent, then the units earn the following expected payoffs.

$$
\pi_1^1 = \n\begin{aligned}\n& k_1 + I_1 \left[\Delta + f \left(h \left(1 \right) \right) - h \left(1 \right) \right] + I_2 \left(\frac{1}{2} \left(1 - \gamma \right) \left(\Delta + f \left(h \left(\frac{2}{1 - \gamma} \right) \right) \right) - h \left(\frac{2}{1 - \gamma} \right) \right) \\
& + \left(\frac{1 - I_1}{2} - \left(1 - I_2 \right) \gamma \right) f \left(h \left(2 \right) \right) \\
& \pi^2 = \left(2 - I_1 - I_2 \right) \left(\frac{f(h(2))}{2} - h \left(2 \right) \right) \\
& \pi_2 = \n\begin{aligned}\n& k_2 + I_2 \frac{1}{2} \left(1 - \gamma \right) \left(\Delta + f \left(h \left(\frac{2}{1 - \gamma} \right) \right) \right) + \left(1 - I_2 \right) \frac{f(h(2))}{2} \\
& - \gamma \left[I_1 \left(\Delta + f \left(h \left(1 \right) \right) \right) - \left(1 - I_1 \right) f \left(h \left(2 \right) \right) \right]\n\end{aligned}
$$

Part (i). Define W and $Y(\gamma)$ as follows.

(7)
\n
$$
W \equiv \frac{f(h(2))}{2} - f(h(1)) + h(1)
$$
\n
$$
Y(\gamma) \equiv \frac{f(h(2))}{1-\gamma} - f\left(h\left(\frac{2}{1-\gamma}\right)\right)
$$

The regularity assumptions on f imply $W<0< Y\,(\gamma).$

Part (ii) - (iv). Comparing the payoffs in (6) shows that a) $U2$ always prefers to trade with as many downstream units as possible; b) if $\Delta \geq Y\left(\gamma\right)$, then D2 prefers to trade with U1; c) if $\Delta < Y(\gamma)$, then D2 prefers to trade with U2; d) if $\Delta \geq W$, then U1 and D1 trade internally, and e) if Δ < W, then D1 orders from U2.

U1 prefers to invest in supplying quality to $D2$ rather than having $D2$ order from U2 if and only if

(8)
$$
\Delta > -f\left(h\left(\frac{2}{1-\gamma}\right)\right) + \frac{2}{1-\gamma}\left(h\left(\frac{2}{1-\gamma}\right) - \gamma f\left(h\left(2\right)\right)\right)
$$

However, $U1$'s incentive to invest in $D2$'s quality is lower after $D2$ commits to purchasing from $U1$ (and commits to not purchasing from $U2$). If $D2$ has committed to trading with U1, then U1 will invest in supplying quality to $D2$ if and only if

(9)
$$
\Delta > -f\left(h\left(\frac{2}{1-\gamma}\right)\right) + \frac{2}{1-\gamma}h\left(\frac{2}{1-\gamma}\right)
$$

The regularity conditions on f imply that the right side of the inequalities in (8) and (9) are strictly less than $Y(\gamma)$; thus, if D2 prefers to order from U1-D1, then U1-D1 will invest in supplying quality to $D2$. Hence, statements (a)-(e) determine the equilibrium order placements. Statements (a)-(e) also prove that W and $Y(\gamma)$ satisfy parts (ii) - (iv) of the lemma.

Straightforward substitution proves parts $Y(0) = 0$ and lim $\lim_{\gamma \to 1} Y(\gamma) = \infty$. Differentiating $Y(\gamma)$ gives

$$
\frac{dY\left(\gamma\right)}{d\gamma} = \frac{f\left(h\left(2\right)\right)}{\left(1-\gamma\right)^2} - \frac{4}{\left(1-\gamma\right)^3} \frac{dh\left(\frac{2}{1-\gamma}\right)}{d\gamma}
$$

The regularity conditions on f make the first term of this derivative positive. The concavity of f and the inverse function properties of h imply that $h(x)$ is decreasing in x. Thus, $\frac{dh\left(\frac{2}{1-\gamma}\right)}{d\gamma}<0$ for $\gamma\in(0,1)$. Therefore, $\frac{dY(\gamma)}{d\gamma}>0$ for all $\gamma\in(0,1)$. \Box

Proof to Proposition 2.

Let B denote the bilateral gains from integration. Formally,

(10)
$$
B \equiv f(h(1)) - h(1) - f(h(2)) + h(2)
$$

Part (i) follows immediately from the lemmas.

The lemmas show that $\Delta \geq Y$ implies that D1 and D2 order from U1 regardless of

U1 and D1's integration decision. Comparing (5) and (6) shows that if both D1 and D2 purchase from U_1 , then integration (weakly) increases U_1 and D_1 's joint payoff if and only if

$$
(11)\quad \left(\frac{1}{2} - \gamma\right)f\left(h\left(2\right)\right) - h\left(2\right) - \left[\frac{1-\gamma}{2}f\left(h\left(\frac{2}{1-\gamma}\right)\right) - h\left(\frac{2}{1-\gamma}\right)\right] \le \frac{\gamma\Delta}{2} + B
$$

The regularity conditions on f imply that B is positive and that

$$
\frac{1-\gamma}{2}f(h(2)) - h(2) < \frac{1-\gamma}{2}f\left(h\left(\frac{2}{1-\gamma}\right)\right) - h\left(\frac{2}{1-\gamma}\right)
$$

Thus, (11) holds for all nonnegative Δ . $Y(\gamma) > 0$, so $\Delta \geq Y(\gamma)$ implies that U1-D1 integration is profitable. This proves part (ii).

The lemmas show that $\Delta \in [W, 0)$ implies the following: a) If U1 and D1 integrate, then D1 orders from U_1 , and $D2$ orders from U_2 . b) If U_1 and $D1$ do not integrate, then both D1 and D2 order from U2. Comparing (5) and (6) and using (7) shows that if $\Delta \in [W, 0)$, then $U1$ and $D1$ earn a larger joint payoff from outcome (a) than from outcome (b). Thus, if $\Delta \in |W, 0\rangle$, then U1 and D1 integrate; D1 orders from U1, and D2 orders from U2. This proves part (iii). \Box

Proof of proposition 3.

Lemmas 1 and 2 say that $\Delta \in [0, Y(\gamma))$ implies a) D1 purchases from U1; b) if U1 and D1 do not integrate, then D2 purchases from $U1$, and c) if $U1$ and D1 integrate, then D2 purchases from U2. Given these trading strategies, U1 and D1 will integrate if and only if

$$
\pi_1^1 \ge \pi^1 + \pi_1
$$

Define $B^{\ast}\left(\Delta,\gamma\right)$ as follows

$$
B^*(\Delta, \gamma) \equiv \frac{1 - 2\gamma}{2} \Delta + \frac{1}{2} f(h(2)) - h(2)
$$

Using the payoffs in (6) and (5) shows that (12) is equivalent to

$$
B \ge B^* \left(\Delta, \gamma\right)
$$

Straightforward calculations show the following:

(13)
$$
B^*(0, \gamma) > 0
$$

$$
\frac{\partial B^*(0, \gamma)}{\partial \gamma} = 0; \frac{\partial B^*(\Delta, \gamma)}{\partial \gamma} < 0, \text{ for } \Delta > 0
$$

$$
\frac{\partial B^*(\Delta, \gamma)}{\partial \Delta} > 0, \text{ for } \gamma < \frac{1}{2}; \frac{\partial B^*(\Delta, \gamma)}{\partial \Delta} < 0, \text{ for } \gamma > \frac{1}{2}
$$

Proof to Proposition 4.

Step 1. Assume $\Delta \geq 0$. Appendix A shows that $\Delta \geq 0$ implies that U2 and D2 integrate.

Define X and Z as follows

$$
X \equiv 2f(h(1)) - 2h(1) - f(h(2))
$$

$$
Z(\gamma) \equiv \frac{2}{1-\gamma} \left(f(h(1)) - h(1) \right) - f\left(h\left(\frac{2}{1-\gamma}\right) \right)
$$

The regularity conditions on f imply

(14)
$$
f(h(1)) - h(1) > f(h(2)) - h(2)
$$

and

(15)
$$
f(h(2)) > 2h(2)
$$

Combining (14) and (15) shows that $X > 0$. Comparing X and Z shows that $X < Z$ for all $\gamma \in (0,1)$.

Straightforward calculations similar to the calculations used to prove the lemmas show the following: a) $\Delta \geq 0$ implies that D1 purchases from U1 regardless of U1 and D1's integration decision. b) The regularity conditions on f and $\Delta \geq 0$ imply that if D2 orders from U_1 , then U_1 sells to D_2 and invest a positive amount in D_2 's input quality regardless of whether $U1$ and $D1$ integrate. c) If $U1$ and $D1$ do not integrate, then an integrated $U2-D2$ purchases from U1 if $\Delta \geq X$ and an integrated U2-D2 trades internally if $\Delta < X$. d) If U1 and D1 are integrated, then an integrated U2-D2 purchases from U1 if $\Delta > Z$ and an integrated U2-D2 trades internally if $\Delta < Z$. Thus $\Delta \in [X, Z)$ is a range of technological advantages for which an integrated U2-D2 purchases from U1 if and only if U1 and D1 are not integrated.

Step 2. If $\Delta \in [X, Z)$, then D2's purchasing strategy implies that U1 and D1 are better off remaining independent if and only if

$$
\left(\frac{1}{2} - \gamma\right)\Delta > \left(1 - \gamma\right)f\left(h\left(1\right)\right) - h\left(1\right) - \left(\frac{3}{2} - \gamma\right)f\left(h\left(2\right)\right) + 2h\left(2\right)
$$

At $\Delta = X + 2\varepsilon$, this inequality is equivalent to

(16)
$$
\varepsilon - \gamma (f (h (1)) - 2h (1) + 2\varepsilon) > -f (h (2)) + 2h (2)
$$

The left side of (16) is linear in γ , so if (16) holds for $\gamma = 0$ and $\gamma = 1$, then (16) holds for all $\gamma \in [0, 1]$. At $\gamma = 0$, (16) is equivalent to

$$
\varepsilon > -f(h(2)) + 2h(2)
$$

The regularity conditions on f imply that this inequality holds for $\varepsilon \geq 0$. At $\gamma = 1$, (16) is equivalent to

(17)
$$
\varepsilon < f(h(2)) - 2h(2) - f(h(1)) + 2h(1)
$$

The regularity conditions on f imply that the right side of (17) is positive, so there exists an $\varepsilon_C > 0$ such that (17) holds for all $\varepsilon \in [0, \varepsilon_C)$.

Define

$$
V \equiv \min\{Z, X + 2\varepsilon_C\}
$$

From above, if $\Delta \in [X, V)$, then U1-D1 integration reduces the sum of U1's and D1's payoffs for all $\gamma \in (0,1)$. Hence, technologies with $\Delta \in [X, V)$ satisfy part (iii) of the proposition. Step 1 of the proof and the definition of V shows that these technologies also satisfy parts (i) and (ii) of the proposition. \Box

Notes

¹There are other ways to model vertical integration decisions within a successive duopoly, and the modelling assumptions can affect the equilibrium integration decisions. For this reason, I do not claim to predict the equilibrium industry structure. Instead, I am content to show that allowing U2-D2 integration does not invalidate the claim that enclosure costs can lead firms to forgo vertical integration.