Supplemental Material for Yongmin Chen, "Strategic Bidding by Potential Competitors: Will Monopoly Persist," The Journal of Industrial Economics, 48 (2), June 2000, pp.161-175.

0.1 Appendix

Proof of Proposition 1. If $K>\max \left\{\Pi_{N}(X Y, X), \Pi_{N}(X, X Y)-\Pi_{N}(X, Y)\right\}$, in equilibrium N will not enter X whether M or N wins the bidding for Y. By Lemma $2, \Pi_{M}(X Y, X)=\Pi_{N}(X, X Y)$. Therefore if $K>\max \left\{\Pi_{N}(X Y, X), \Pi_{M}(X Y, X)-\right.$ $\left.\Pi_{N}(X, Y)\right\}, v_{M}=\Pi_{M}(X Y, 0)-\Pi_{M}(X, Y)$ and $v_{N}=\Pi_{N}(X, Y)$. Since by Lemma 1,

$$
\Pi_{M}(X Y, 0)>\Pi_{M}(X, Y)+\Pi_{N}(X, Y)
$$

M wins the bidding for Y and the winning bid is $\Pi_{N}(X, Y)$.
Proof of Proposition 2. When $\Pi_{N}(X Y, X)>K>\Pi_{N}(X, X Y)-$ $\Pi_{N}(X, Y)$, in equilibrium N will stay out of X if winning Y, but N will enter X if M wins Y. In this case, $v_{M}=\Pi_{M}(X Y, X)-\Pi_{M}(X, Y)$ and $v_{N}=$ $\Pi_{N}(X, Y)-\left(\Pi_{N}(X Y, X)-K\right)$. By Lemma $2, \Pi_{M}(X Y, X)=\Pi_{N}(X, X Y)$. Thus when $\Pi_{N}(X Y, X)>K>\Pi_{M}(X Y, X)-\Pi_{N}(X, Y), N$ wins Y if

$$
\Pi_{N}(X, Y)-\Pi_{N}(X Y, X)+K>\Pi_{M}(X Y, X)-\Pi_{M}(X, Y)
$$

which holds if
$\Pi_{N}(X, Y)-\Pi_{N}(X Y, X)+\Pi_{M}(X Y, X)-\Pi_{N}(X, Y) \geq \Pi_{M}(X Y, X)-\Pi_{M}(X, Y)$, or $\Pi_{M}(X, Y) \geq \Pi_{N}(X Y, X)$.

Next, in equilibrium, when $\Pi_{N}(X, X Y)-\Pi_{N}(X, Y)>K>\Pi_{N}(X Y, X)$, N will enter X if winning Y, but N will not enter X if M wins the bidding. In this case, $v_{M}=\Pi_{M}(X Y, 0)-\Pi_{M}(X, X Y)$ and $v_{N}=\Pi_{N}(X, X Y)-K$. Therefore, when $\Pi_{M}(X Y, X)-\Pi_{N}(X, Y)>K>\Pi_{N}(X Y, X), M$ wins Y and N stays out of X if

$$
\Pi_{M}(X Y, 0)-\Pi_{M}(X, X Y)>\Pi_{N}(X, X Y)-K
$$

which holds by combining the following: $\Pi_{M}(X Y, 0)>\Pi_{M}(X Y, X)+\Pi_{N}(X Y, X)-$ K since $\Pi_{M}(X Y, 0)>\Pi_{M}(X Y, X)$ from Lemma $1 ; \Pi_{M}(X Y, X)=\Pi_{N}(X, X Y)$ and $\Pi_{N}(X Y, X)=\Pi_{M}(X, X Y)$ from Lemma 2.

Proof of Corollary 1. Simple calculations reveal the following:

$$
\begin{gathered}
\Pi_{M}(X, Y)=\left(\frac{1}{2-\beta}\right)^{2}, \quad \Pi_{N}(X, Y)=\left(\frac{1}{2-\beta}\right)^{2} \\
\Pi_{M}(X Y, X)=\frac{1}{36} \frac{(5 \beta+13)}{(1-\beta)}, \quad \Pi_{N}(X Y, X)=\frac{1}{9}
\end{gathered}
$$

Therefore,

$$
\Pi_{M}(X, Y)-\Pi_{N}(X Y, X)=\left(\frac{1}{2-\beta}\right)^{2}-\frac{1}{9}
$$

which increases in β for $\beta \in(-1,1)$. Since $\Pi_{M}(X, Y)-\Pi_{N}(X Y, X)=0$ when $\beta=-1, \Pi_{M}(X, Y) \geq \Pi_{N}(X Y, X)$ always holds in this example. Next,

$$
\begin{gathered}
\Pi_{M}(X Y, X)-\Pi_{N}(X, Y)=\frac{1}{36} \frac{(\beta+1)\left(5 \beta^{2}-12 \beta+16\right)}{(1-\beta)(2-\beta)^{2}} \\
\Pi_{M}(X Y, X)-\left(\Pi_{N}(X Y, X)+\Pi_{N}(X, Y)\right)=\frac{1}{4} \beta \frac{4-3 \beta+\beta^{2}}{(1-\beta)(2-\beta)^{2}} .
\end{gathered}
$$

Since, for $\beta \in(-1,1)$,

$$
\frac{4-3 \beta+\beta^{2}}{(1-\beta)(2-\beta)^{2}}>0
$$

we have $\Pi_{M}(X Y, X)-\Pi_{N}(X, Y)<\Pi_{N}(X Y, X)$ if and only if $\beta<0$, and $\Pi_{M}(X Y, X)-\Pi_{N}(X, Y)<\Pi_{N}(X Y, X)$ if and only if $\beta>0$. The conclusion then follows from Proposition 2.

Proof of Theorem 1. Under $A 1$ and by Proposition 2, we need only to prove the following two claims. Claim 1: $\Pi_{N}(X Y, X)>\Pi_{M}(X Y, X)-$ $\Pi_{N}(X, Y)$ and $\Pi_{M}(X, Y) \geq \Pi_{N}(X Y, X)$ if X and Y are strategic substitutes, and Claim 2: $\Pi_{N}(X Y, X)<\Pi_{M}(X Y, X)-\Pi_{N}(X, Y)$ if X and Y are strategic complements.

Proof of Claim 1: First,

$$
\begin{gathered}
\Pi_{N}(X Y, X)=x_{N}^{2} f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right), \\
\Pi_{M}(X Y, X)=x_{M}^{2} f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)+y_{M}^{2}\left[g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c\right]
\end{gathered}
$$

$$
\Pi_{M}(X, Y)=x_{M}^{1} f\left(x_{M}^{1}, y_{N}^{1}\right), \quad \Pi_{N}(X, Y)=y_{N}^{1}\left[g\left(y_{N}^{1}, x_{M}^{1}\right)-c\right] .
$$

In equilibrium, the following first-order conditions must be satisfied:

$$
\begin{gather*}
f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)+x_{N}^{2} f_{1}\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)=0, \tag{3}\\
f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)+x_{M}^{2} f_{1}\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)+y_{M}^{2} g_{2}\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)=0, \tag{4}\\
x_{M}^{2} f_{2}\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)+g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c+y_{M}^{2} g_{1}\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)=0, \tag{5}\\
f\left(x_{M}^{1}, y_{N}^{1}\right)+x_{M}^{1} f_{1}\left(x_{M}^{1}, y_{N}^{1}\right)=0, \tag{6}\\
g\left(y_{N}^{1}, x_{M}^{1}\right)-c+y_{N}^{1} g_{1}\left(y_{N}^{1}, x_{M}^{1}\right)=0 . \tag{7}
\end{gather*}
$$

Since $g_{2}<0$ when X and Y are strategic substitutes, we have $x_{M}^{2}<x_{N}^{2}$. Hence

$$
x_{M}^{2} f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)<\Pi_{N}(X Y, X)
$$

It then follows that $\Pi_{N}(X Y, X)+\Pi_{N}(X, Y)>\Pi_{M}(X Y, X)$ if

$$
y_{N}^{1}\left[g\left(y_{N}^{1}, x_{M}^{1}\right)-c\right] \geq y_{M}^{2}\left[g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c\right] .
$$

Now if $x_{M}^{1} \leq x_{M}^{2}+x_{N}^{2}$, then

$$
y_{N}^{1}\left[g\left(y_{N}^{1}, x_{M}^{1}\right)-c\right] \geq y_{M}^{2}\left[g\left(y_{M}^{2}, x_{M}^{1}\right)-c\right] \geq y_{M}^{2}\left[g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c\right] .
$$

Therefore our proof of the first part of Claim 1 will be complete if we can show that $x_{M}^{1} \leq x_{M}^{2}+x_{N}^{2}$. Suppose to the contrary, $x_{M}^{1}>x_{M}^{2}+x_{N}^{2}$. Then, since

$$
\frac{\partial \pi_{x}\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)}{\partial x}=f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)+\left(x_{M}^{2}+x_{N}^{2}\right) f_{1}\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)<0
$$

from equations (3) and (6), we have, from the property of strategic substitutes, $y_{M}^{2}>y_{N}^{1}$.

Next, by the intermediate-value theorem for functions of multiple variables,
$\frac{\partial \pi_{x}\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)}{\partial x}-\frac{\partial \pi_{x}\left(x_{M}^{1}, y_{N}^{1}\right)}{\partial x}=\left(x_{M}^{2}+x_{N}^{2}-x_{M}^{1}\right) \frac{\partial^{2} \pi_{x}\left(x^{\prime}, y^{\prime}\right)}{\partial x^{2}}+\left(y_{M}^{2}-y_{N}^{1}\right) \frac{\partial^{2} \pi_{x}\left(x^{\prime}, y^{\prime}\right)}{\partial x \partial y}$
for some $x_{M}^{2}+x_{N}^{2}<x^{\prime}<x_{M}^{1}$ and $y_{N}^{1}<y^{\prime}<y_{M}^{2}$. But since $\frac{\partial \pi_{x}\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)}{\partial x}<0$ and $\frac{\partial \pi_{x}\left(x_{M}^{1}, y_{N}^{1}\right)}{\partial x}=0$, we have

$$
-\left(x_{M}^{1}-\left(x_{M}^{2}+x_{N}^{2}\right)\right) \frac{\partial^{2} \pi_{x}\left(x^{\prime}, y^{\prime}\right)}{\partial x^{2}}<-\left(y_{M}^{2}-y_{N}^{1}\right) \frac{\partial^{2} \pi_{x}\left(x^{\prime}, y^{\prime}\right)}{\partial x \partial y}
$$

Since, by assumption AD,

$$
-\frac{\partial^{2} \pi_{x}\left(x^{\prime}, y^{\prime}\right)}{\partial x^{2}} \geq-\frac{\partial^{2} \pi_{x}\left(x^{\prime}, y^{\prime}\right)}{\partial x \partial y}
$$

we have

$$
\left(x_{M}^{1}-\left(x_{M}^{2}+x_{N}^{2}\right)\right)<\left(y_{M}^{2}-y_{N}^{1}\right) .
$$

On the other hand, again by the intermediate-value theorem,

$$
\frac{\partial \pi_{y}\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)}{\partial y}-\frac{\partial \pi_{y}\left(y_{N}^{1}, x_{M}^{1}\right)}{\partial y}=\left(y_{M}^{2}-y_{N}^{1}\right) \frac{\partial^{2} \pi_{y}\left(y^{\prime \prime}, x^{\prime \prime}\right)}{\partial y^{2}}+\left(x_{M}^{2}+x_{N}^{2}-x_{M}^{1}\right) \frac{\partial^{2} \pi_{y}\left(y^{\prime \prime}, x^{\prime \prime}\right)}{\partial y \partial x}
$$

for some $x_{M}^{2}+x_{N}^{2}<x^{\prime \prime}<x_{M}^{1}$ and $y_{N}^{1}<y^{\prime \prime}<y_{M}^{2}$. But since

$$
\frac{\partial \pi_{y}\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)}{\partial y}=g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c+y_{M}^{2} g_{1}\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)>0
$$

from equation (5), and $\frac{\partial \pi_{y}\left(y_{N}^{1}, x_{M}^{1}\right)}{\partial y}=0$, we have

$$
-\left(y_{M}^{2}-y_{N}^{1}\right) \frac{\partial^{2} \pi_{y}\left(y^{\prime \prime}, x^{\prime \prime}\right)}{\partial y^{2}}<-\left(x_{M}^{1}-\left(x_{M}^{2}+x_{N}^{2}\right)\right) \frac{\partial^{2} \pi_{y}\left(y^{\prime \prime}, x^{\prime \prime}\right)}{\partial y \partial x}
$$

Since

$$
-\frac{\partial^{2} \pi_{y}\left(y^{\prime \prime}, x^{\prime \prime}\right)}{\partial y^{2}} \geq-\frac{\partial^{2} \pi_{y}\left(y^{\prime \prime}, x^{\prime \prime}\right)}{\partial y \partial x}
$$

from $A 2$, we have

$$
\left(y_{M}^{2}-y_{N}^{1}\right)<\left(x_{M}^{1}-\left(x_{M}^{2}+x_{N}^{2}\right)\right) .
$$

This is a contradiction. Therefore $x_{M}^{1} \leq x_{M}^{2}+x_{N}^{2}$.
Next, for the second part of Claim 1,

$$
\Pi_{M}(X, Y)=x_{M}^{1} f\left(x_{M}^{1}, y_{N}^{1}\right) \geq x_{N}^{2} f\left(x_{N}^{2}, y_{N}^{1}\right) .
$$

Since

$$
x_{N}^{2} f\left(x_{N}^{2}, y_{N}^{1}\right)-x_{N}^{2} f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)=x_{N}^{2}\left[f\left(x_{N}^{2}, y_{N}^{1}\right)-f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)\right],
$$

it follows that $\Pi_{M}(X, Y) \geq \Pi_{N}(X Y, X)$ if $f\left(x_{N}^{2}, y_{N}^{1}\right)-f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right) \geq 0$. Since $x_{M}^{1} \leq x_{M}^{2}+x_{N}^{2}$, we have $y_{M}^{2}<y_{N}^{1}$ from equations (5) and (7). By the
intermediate-value theorem, there exists some (\tilde{x}, \tilde{y}) with $x_{N}^{2}<\tilde{x}<x_{M}^{2}+x_{N}^{2}$ and $y_{M}^{2}<\tilde{y}<y_{N}^{1}$ such that

$$
f\left(x_{N}^{2}, y_{N}^{1}\right)-f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)=-x_{M}^{2} f_{1}(\tilde{x}, \tilde{y})+\left(y_{N}^{1}-y_{M}^{2}\right) f_{2}(\tilde{x}, \tilde{y})
$$

which is non-negative by assumption $A 3$. This completes the proof of Claim 1.

```
Proof of Claim 2:
    \(\Pi_{M}(X Y, X)-\left(\Pi_{N}(X Y, X)+\Pi_{N}(X, Y)\right)\)
    \(=x_{M}^{2} f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)-x_{N}^{2} f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)+y_{M}^{2}\left[g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c\right]-y_{N}^{1}\left[g\left(y_{N}^{1}, x_{M}^{1}\right)-c\right]\).
```

 Since from equations (3) and (4),
 $$
\begin{aligned}
& x_{M}^{2} f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)-x_{N}^{2} f\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right)=x_{N}^{2} y_{M}^{2} g_{2}\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right), \\
& \Pi_{M}(X Y, X)-\left(\Pi_{N}(X Y, X)+\Pi_{N}(X, Y)\right) \\
= & x_{N}^{2} y_{M}^{2} g_{2}\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)+y_{M}^{2}\left[g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c\right]-y_{N}^{1}\left[g\left(y_{N}^{1}, x_{M}^{1}\right)-c\right] .
\end{aligned}
$$

If $y_{M}^{2}\left[g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c\right]-y_{N}^{1}\left[g\left(y_{N}^{1}, x_{M}^{1}\right)-c\right] \geq 0$, our proof is complete. Now suppose

$$
y_{M}^{2}\left[g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c\right]-y_{N}^{1}\left[g\left(y_{N}^{1}, x_{M}^{1}\right)-c\right]<0 .
$$

If $y_{M}^{2} \leq y_{N}^{1}$, then from (5) and (7), we would have $x_{M}^{2}+x_{N}^{2}<x_{M}^{1}$. But then M could increase profit by choosing $x_{M}^{2}=x_{M}^{1}-x_{N}^{2}$ and $y_{M}^{2}=y_{N}^{1}$. Thus $y_{M}^{2}>y_{N}^{1}$, which implies $x_{M}^{2}+x_{N}^{2}>x_{M}^{1}$ from comparing equations (3) and (6), using the property of strategic complements. Now

$$
\begin{align*}
& y_{M}^{2}\left[g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c\right]-y_{N}^{1}\left[g\left(y_{N}^{1}, x_{M}^{1}\right)-c\right] \\
> & y_{M}^{2}\left[g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c\right]-y_{N}^{1}\left[g\left(y_{N}^{1}, x_{M}^{2}+x_{N}^{2}\right)-c\right] \\
= & \left(y_{M}^{2}-y_{N}^{1}\right)\left[g\left(\hat{y}, x_{M}^{2}+x_{N}^{2}\right)-c+\widehat{y} g_{1}\left(\hat{y}, x_{M}^{2}+x_{N}^{2}\right)\right] \tag{8}
\end{align*}
$$

for some $\hat{y} \in\left(y_{N}^{1}, y_{M}^{2}\right)$, where the inequality is due to $g_{2}>0$ and the equality is due to the intermediate-value theorem. we thus must have

$$
g\left(\hat{y}, x_{M}^{2}+x_{N}^{2}\right)-c+\hat{y} g_{1}\left(\hat{y}, x_{M}^{2}+x_{N}^{2}\right)<0
$$

Since $\hat{y}<y_{M}^{2}$, it then follows that
$g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c+y_{M}^{2} g_{1}\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)<g\left(\hat{y}, x_{M}^{2}+x_{N}^{2}\right)-c+\hat{y} g_{1}\left(\hat{y}, x_{M}^{2}+x_{N}^{2}\right)$.

Therefore,

$$
\begin{aligned}
& \Pi_{M}(X Y, X)-\left(\Pi_{N}(X Y, X)+\Pi_{N}(X, Y)\right) \\
= & x_{N}^{2} y_{M}^{2} g_{2}\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)+y_{M}^{2}\left[g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c\right]-y_{N}^{1}\left[g\left(y_{N}^{1}, x_{M}^{1}\right)-c\right] \\
> & x_{N}^{1} y_{M}^{2} g_{2}\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)+\left(y_{M}^{2}-y_{N}^{1}\right)\left[g\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-c+y_{M}^{2} g_{1}\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)\right] \\
= & x_{N}^{2} y_{M}^{2} g_{2}\left(y_{M}^{2}, x_{M}^{2}+x_{N}^{2}\right)-\left(y_{M}^{2}-y_{N}^{1}\right) x_{M}^{2} f_{2}\left(x_{M}^{2}+x_{N}^{2}, y_{M}^{2}\right) \\
\geq & 0,
\end{aligned}
$$

where the first inequality is due to relations (8) and (9), the second equality is due to equation (5), and the last inequality is due to assumption $A 3$.

