Supplemental Materials for Andrew C. Brod and Ram Shivakumar, "Advantageous SemiCollusion," The Journal of Industrial Economics 47 (2), June 1999, pp. 221-230

This supplement contains a proof of Proposition 1 and additional discussion of Proposition 2 in the published article.

Proof of Proposition 1

Proposition 1. For $0 \leq \beta \leq 1$ and for all $0 \leq \gamma<1, x^{P}>x^{C}$.
Proof. Recall that $x^{P}=\frac{A}{\Phi}(2-(1+\beta) \gamma)$, where $\Phi=4(1-\gamma)(1+\gamma)^{2} b \delta-(1+$ $\beta)(2-(1+\beta) \gamma)>0$ is assured by stability conditions, and $x^{C}=\frac{2 A}{\theta}(2-\beta \gamma)$, where $\theta=(2-\gamma)(2+\gamma)^{2} b \delta-2(1+\beta)(2-\beta \gamma)>0$ ensures an interior solution. Then

$$
\begin{aligned}
x^{P}-x^{C} & =\frac{A}{\theta \Phi}\{(2-(1+\beta) \gamma) \theta-2(2-\beta \gamma) \Phi\} \\
& =\frac{A b \delta}{\theta \Phi}\left\{(2-\gamma)(2+\gamma)^{2}(2-(1+\beta) \gamma)-8(1-\gamma)(1+\gamma)^{2}(2-\beta \gamma)\right\} \\
& =\frac{A b \delta}{\theta \Phi}\left\{4(1-\beta) \gamma^{2}+2 \gamma^{2}\left(2+\gamma^{2}-\gamma-2 \beta \gamma\right)+(2-\gamma)(1-\beta) \gamma^{3}\right\}
\end{aligned}
$$

Because the expression within brackets is positive for all β and for all $\gamma>0$, this proves the proposition. Q.E.D.

Another Perspective on Proposition 2

For two values of $\gamma, 0.4$ and 0.6 , we plot percentage differences in both output and profit (e.g. $\frac{q^{P}-q^{C}}{q^{C}} \times 100 \%$ for output) against the spillover parameter β. In the top panel of Figure 3 and the first column of Table 1 , for $\gamma=0.4$, we see that both output and profit are lower under the cartel if β is less than about 0.1 , which corresponds to a slice of region B in Figure 2. But cartel and competition are not much different in this interval, as cartel output is between 5% and 10% less than competitive output, and cartel profit is no more than 5% less than competitive profit. In the bottom panel of Figure 3 and the second column of Table 1 , for $\gamma=0.6$, both output and profit are higher under the cartel if β is between 0.3 and 0.7 , which is a slice of region A. In this interval, output is not significantly higher for a cartel, with cartel output exceeding competitive output by around 5%; however, cartel profit exceeds competitive profit by as much as 35% in this interval.

Table 1. Percent Differences Between Regimes P (Production Cartel) and C (Competition)

	$\gamma=0.4$		$\gamma=0.6$	
β	Output	Profit	Output	Profit
0.0	-7.39	-4.17	3.52	-81.40
0.1	-6.78	0.69	5.15	-49.52
0.2	-6.25	5.08	6.28	-22.51
0.3	-5.81	8.96	6.78	-0.31
0.4	-5.51	12.27	6.51	16.92
0.5	-5.36	14.96	5.40	29.00
0.6	-5.41	16.94	3.41	35.93
0.7	-5.69	18.10	0.60	37.98
0.8	-6.25	18.35	-2.95	35.78
0.9	-7.12	17.62	-7.06	30.19
1.0	-8.33	15.85	-11.54	22.25

